Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > ApNano Materials Announces Major Breakthrough in Industrial Nanotube Production for Bullet Proof Vests

Abstract:
ApNano Materials, Inc., a provider of nanotechnology-based products, today announced a major breakthrough in the production of the company's unique, inorganic tungsten disulfide (WS2) nanotubes in industrial quantities.

ApNano Materials Announces Major Breakthrough in Industrial Nanotube Production for Bullet Proof Vests

New York, NY | Posted on June 30th, 2008

The synthetic route developed opens new doors to large scale production of such nanotubes for a variety of commercial markets. The inorganic nanotubes have exhibited revolutionary chemical and physical properties that enable a wide range of applications.

Inorganic WS2 nanotubes are a ultra-strong impact resistant material making them excellent candidates for producing bullet proof vests, helmets, car bumpers, high strength glues and binders, and other personal safety equipment for saving lives and preventing injuries. The unique nanotubes are up to 4-5 times stronger than steel and about 6 times stronger than Kevlar, a popular material used for bullet proof vests.

In addition to ballistic protection materials and polymer composites, WS2 nanotubes can be implemented in nanoelectronics, fuel cells, ultra-filtration membranes and catalysts. For example, since these nanotubes are semi-conductors they can be used in products such as advanced high resolution flat panel displays and as tips for atomic force microscopes (AFMs). The optical properties of the inorganic nanotubes enable numerous other applications in the fields of nanolithography, photocatalysis and other fields.

The nanotubes are relatively long with respect to their diameter and it is this high aspect ratio property that gives them their unique strength and chemical properties. Laboratory experiments conducted by Nobel Laureate Professor Sir Harold Kroto and his colleagues have demonstrated that ApNano's nanotubes are strong enough to withstand a pressure of 21 GPa (Gigapascal) - the equivalent of 210 tons per square centimeter, Dimensions are up to 150 microns in length and 30 to 180 nanometers in diameter. In fact the diameters of these nanotubes are so small that a thousand of them can fit across the width of a single human hair.

"The synthesis of the WS2 and other inorganic nanotubes was investigated by Prof. Reshef Tenne at the Weizmann Institute of Science (WIS), Israel, during the last 16 years. These investigations resulted in the synthesis of a few milligrams of pure nanotubes or mixture of nanotubes with flat and spherical nanoparticles," said Dr. Alla Zak, Chief Scientist of ApNano Materials. "The process, however, was extremely difficult to scale up. Based on this knowledge, ApNano Materials elaborated a new design for a reactor which enables the production of pure WS2 nanotubes in commercial quantities. This new process also eliminates the most problematic part of conventional nanotubes synthesis - the need to separate the nanotubes from the rest of the material. In ApNano's novel reactor pure nanotubes have been obtained. I am confident that further optimization of the synthetic process will result in additional increases in nanotube production."

"The new breakthrough in synthesizing WS2 nanotubes is another milestone in our continued strategy and efforts to offer unique nanotechnology-based product lines," said Dr. Menachem Genut, President and CEO of ApNano Materials. "In addition to new products, we are constantly searching for new methods that will enable us to enhance bulk production processes." Dr. Genut was a research fellow in the original research group which discovered the inorganic nanoparticles and the inorganic nanotubes at the Weizmann Institute of Science, Israel, and first to synthesize the new material. The group was led by Professor Reshef Tenne, currently the Director of Helen and Martin Kimmel Center for Nanoscale Science at the Weizmann Institute.

"Our inorganic nanotubes address very fast growing markets. It will open new opportunities for ApNano Materials, with the potential for generating considerable revenues," said Aharon Feuerstein, ApNano Materials' Chairman and CFO.

In addition to nanotubes, ApNano Materials produces other particles of tungsten disulfide that have a structure of nested spheres, called inorganic fullerenes, which lubricate mainly by rolling like miniature ball bearings and by the formation of tribofilms on the surfaces of the moving parts. According to Dr. Niles Fleischer, VP of Business and Product Development, "When used as an additive to liquid oil or grease, the inorganic fullerenes significantly enhance the lubricating properties of the fluid with respect to wear and friction by an order of magnitude versus the same lubricant without this additive". Based on the inorganic fullerenes, ApNano Materials developed NanoLub®, the world's first commercial nanotechnology-based solid lubricant. NanoLub-based enhanced lubricants are being sold in various markets around the world today.

####

About ApNano Materials, Inc.
ApNano Materials (www.apnano.com) is a private nanotechnology company founded in 2002 by Dr. Menachem Genut, President and CEO and Mr. Aharon Feuerstein, Chairman and CFO. ApNano Materials was incorporated in the US and is headquartered in New York, USA. Its fully-owned Israeli subsidiary - NanoMaterials, Ltd., is located in the high tech science park adjacent to the Weizmann Institute campus in Ness Ziona, Israel. The company was granted an exclusive license by Yeda Research and Development Co. Ltd, the commercial arm of the Weizmann Institute of Science, Israel, to manufacture, commercialize and sell a new class of nanomaterials based on inorganic compounds that were discovered at the Institute. The shareholders of ApNano Materials, besides the founders, are Newton Technology VC Fund, Yeda Research and Development Co. LTD. (the commercial arm of the Weizmann Institute of Science), AYYT Technological Applications and Date Update LTD. (the commercial arm of Holon Institute of Technology (HIT), Israel), and private European investors.

NanoLub, a green, environmentally friendly material, is a registered trademark of ApNano Materials, Inc.

For more information, please click here

Contacts:
David Kanaan
Kanaan Public Relations
Tel.: +972-3-5408188
Mobile phone: +972-54-4255307

Copyright © ApNano Materials, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Nanotech Security to Present at the Optical Document Security Conference February 11, 2016 February 4th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

Photochromic Nanostructures; Tools to Detect, Tract Living Cells January 14th, 2016

Nanotech Grants Options and Restricted Share Units January 11th, 2016

Nanotubes/Buckyballs/Fullerenes

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Materials/Metamaterials

Chemical cages: New technique advances synthetic biology February 10th, 2016

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

Making sense of metallic glass February 9th, 2016

A fast solidification process makes material crackle February 8th, 2016

Announcements

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Homeland Security

Detecting and identifying explosives with single test December 10th, 2015

Columbia engineers build biologically powered chip: System combines biological ion channels with solid-state transistors to create a new kind of electronics December 7th, 2015

Nanoparticle delivery maximizes drug defense against bioterrorism agent: UCLA team develops method for improving drug’s efficacy while reducing side effects November 6th, 2015

Toward clearer, cheaper imaging of ultrafast phenomena: A new, all-optical method for compressing narrow electron pulses to a billionth of a billionth of a second could improve real-time movies of chemical reactions and other ultrafast processes October 14th, 2015

Military

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic