Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > ApNano Materials Announces Major Breakthrough in Industrial Nanotube Production for Bullet Proof Vests

Abstract:
ApNano Materials, Inc., a provider of nanotechnology-based products, today announced a major breakthrough in the production of the company's unique, inorganic tungsten disulfide (WS2) nanotubes in industrial quantities.

ApNano Materials Announces Major Breakthrough in Industrial Nanotube Production for Bullet Proof Vests

New York, NY | Posted on June 30th, 2008

The synthetic route developed opens new doors to large scale production of such nanotubes for a variety of commercial markets. The inorganic nanotubes have exhibited revolutionary chemical and physical properties that enable a wide range of applications.

Inorganic WS2 nanotubes are a ultra-strong impact resistant material making them excellent candidates for producing bullet proof vests, helmets, car bumpers, high strength glues and binders, and other personal safety equipment for saving lives and preventing injuries. The unique nanotubes are up to 4-5 times stronger than steel and about 6 times stronger than Kevlar, a popular material used for bullet proof vests.

In addition to ballistic protection materials and polymer composites, WS2 nanotubes can be implemented in nanoelectronics, fuel cells, ultra-filtration membranes and catalysts. For example, since these nanotubes are semi-conductors they can be used in products such as advanced high resolution flat panel displays and as tips for atomic force microscopes (AFMs). The optical properties of the inorganic nanotubes enable numerous other applications in the fields of nanolithography, photocatalysis and other fields.

The nanotubes are relatively long with respect to their diameter and it is this high aspect ratio property that gives them their unique strength and chemical properties. Laboratory experiments conducted by Nobel Laureate Professor Sir Harold Kroto and his colleagues have demonstrated that ApNano's nanotubes are strong enough to withstand a pressure of 21 GPa (Gigapascal) - the equivalent of 210 tons per square centimeter, Dimensions are up to 150 microns in length and 30 to 180 nanometers in diameter. In fact the diameters of these nanotubes are so small that a thousand of them can fit across the width of a single human hair.

"The synthesis of the WS2 and other inorganic nanotubes was investigated by Prof. Reshef Tenne at the Weizmann Institute of Science (WIS), Israel, during the last 16 years. These investigations resulted in the synthesis of a few milligrams of pure nanotubes or mixture of nanotubes with flat and spherical nanoparticles," said Dr. Alla Zak, Chief Scientist of ApNano Materials. "The process, however, was extremely difficult to scale up. Based on this knowledge, ApNano Materials elaborated a new design for a reactor which enables the production of pure WS2 nanotubes in commercial quantities. This new process also eliminates the most problematic part of conventional nanotubes synthesis - the need to separate the nanotubes from the rest of the material. In ApNano's novel reactor pure nanotubes have been obtained. I am confident that further optimization of the synthetic process will result in additional increases in nanotube production."

"The new breakthrough in synthesizing WS2 nanotubes is another milestone in our continued strategy and efforts to offer unique nanotechnology-based product lines," said Dr. Menachem Genut, President and CEO of ApNano Materials. "In addition to new products, we are constantly searching for new methods that will enable us to enhance bulk production processes." Dr. Genut was a research fellow in the original research group which discovered the inorganic nanoparticles and the inorganic nanotubes at the Weizmann Institute of Science, Israel, and first to synthesize the new material. The group was led by Professor Reshef Tenne, currently the Director of Helen and Martin Kimmel Center for Nanoscale Science at the Weizmann Institute.

"Our inorganic nanotubes address very fast growing markets. It will open new opportunities for ApNano Materials, with the potential for generating considerable revenues," said Aharon Feuerstein, ApNano Materials' Chairman and CFO.

In addition to nanotubes, ApNano Materials produces other particles of tungsten disulfide that have a structure of nested spheres, called inorganic fullerenes, which lubricate mainly by rolling like miniature ball bearings and by the formation of tribofilms on the surfaces of the moving parts. According to Dr. Niles Fleischer, VP of Business and Product Development, "When used as an additive to liquid oil or grease, the inorganic fullerenes significantly enhance the lubricating properties of the fluid with respect to wear and friction by an order of magnitude versus the same lubricant without this additive". Based on the inorganic fullerenes, ApNano Materials developed NanoLubŪ, the world's first commercial nanotechnology-based solid lubricant. NanoLub-based enhanced lubricants are being sold in various markets around the world today.

####

About ApNano Materials, Inc.
ApNano Materials (www.apnano.com) is a private nanotechnology company founded in 2002 by Dr. Menachem Genut, President and CEO and Mr. Aharon Feuerstein, Chairman and CFO. ApNano Materials was incorporated in the US and is headquartered in New York, USA. Its fully-owned Israeli subsidiary - NanoMaterials, Ltd., is located in the high tech science park adjacent to the Weizmann Institute campus in Ness Ziona, Israel. The company was granted an exclusive license by Yeda Research and Development Co. Ltd, the commercial arm of the Weizmann Institute of Science, Israel, to manufacture, commercialize and sell a new class of nanomaterials based on inorganic compounds that were discovered at the Institute. The shareholders of ApNano Materials, besides the founders, are Newton Technology VC Fund, Yeda Research and Development Co. LTD. (the commercial arm of the Weizmann Institute of Science), AYYT Technological Applications and Date Update LTD. (the commercial arm of Holon Institute of Technology (HIT), Israel), and private European investors.

NanoLub, a green, environmentally friendly material, is a registered trademark of ApNano Materials, Inc.

For more information, please click here

Contacts:
David Kanaan
Kanaan Public Relations
Tel.: +972-3-5408188
Mobile phone: +972-54-4255307

Copyright © ApNano Materials, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

'Exceptional' research points way toward quantum discoveries: Rice University scientists make tunable light-matter couplings in nanotube films April 30th, 2018

Materials/Metamaterials

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Announcements

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Homeland Security

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

Military

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project