Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > ApNano Materials Announces Major Breakthrough in Industrial Nanotube Production for Bullet Proof Vests

ApNano Materials, Inc., a provider of nanotechnology-based products, today announced a major breakthrough in the production of the company's unique, inorganic tungsten disulfide (WS2) nanotubes in industrial quantities.

ApNano Materials Announces Major Breakthrough in Industrial Nanotube Production for Bullet Proof Vests

New York, NY | Posted on June 30th, 2008

The synthetic route developed opens new doors to large scale production of such nanotubes for a variety of commercial markets. The inorganic nanotubes have exhibited revolutionary chemical and physical properties that enable a wide range of applications.

Inorganic WS2 nanotubes are a ultra-strong impact resistant material making them excellent candidates for producing bullet proof vests, helmets, car bumpers, high strength glues and binders, and other personal safety equipment for saving lives and preventing injuries. The unique nanotubes are up to 4-5 times stronger than steel and about 6 times stronger than Kevlar, a popular material used for bullet proof vests.

In addition to ballistic protection materials and polymer composites, WS2 nanotubes can be implemented in nanoelectronics, fuel cells, ultra-filtration membranes and catalysts. For example, since these nanotubes are semi-conductors they can be used in products such as advanced high resolution flat panel displays and as tips for atomic force microscopes (AFMs). The optical properties of the inorganic nanotubes enable numerous other applications in the fields of nanolithography, photocatalysis and other fields.

The nanotubes are relatively long with respect to their diameter and it is this high aspect ratio property that gives them their unique strength and chemical properties. Laboratory experiments conducted by Nobel Laureate Professor Sir Harold Kroto and his colleagues have demonstrated that ApNano's nanotubes are strong enough to withstand a pressure of 21 GPa (Gigapascal) - the equivalent of 210 tons per square centimeter, Dimensions are up to 150 microns in length and 30 to 180 nanometers in diameter. In fact the diameters of these nanotubes are so small that a thousand of them can fit across the width of a single human hair.

"The synthesis of the WS2 and other inorganic nanotubes was investigated by Prof. Reshef Tenne at the Weizmann Institute of Science (WIS), Israel, during the last 16 years. These investigations resulted in the synthesis of a few milligrams of pure nanotubes or mixture of nanotubes with flat and spherical nanoparticles," said Dr. Alla Zak, Chief Scientist of ApNano Materials. "The process, however, was extremely difficult to scale up. Based on this knowledge, ApNano Materials elaborated a new design for a reactor which enables the production of pure WS2 nanotubes in commercial quantities. This new process also eliminates the most problematic part of conventional nanotubes synthesis - the need to separate the nanotubes from the rest of the material. In ApNano's novel reactor pure nanotubes have been obtained. I am confident that further optimization of the synthetic process will result in additional increases in nanotube production."

"The new breakthrough in synthesizing WS2 nanotubes is another milestone in our continued strategy and efforts to offer unique nanotechnology-based product lines," said Dr. Menachem Genut, President and CEO of ApNano Materials. "In addition to new products, we are constantly searching for new methods that will enable us to enhance bulk production processes." Dr. Genut was a research fellow in the original research group which discovered the inorganic nanoparticles and the inorganic nanotubes at the Weizmann Institute of Science, Israel, and first to synthesize the new material. The group was led by Professor Reshef Tenne, currently the Director of Helen and Martin Kimmel Center for Nanoscale Science at the Weizmann Institute.

"Our inorganic nanotubes address very fast growing markets. It will open new opportunities for ApNano Materials, with the potential for generating considerable revenues," said Aharon Feuerstein, ApNano Materials' Chairman and CFO.

In addition to nanotubes, ApNano Materials produces other particles of tungsten disulfide that have a structure of nested spheres, called inorganic fullerenes, which lubricate mainly by rolling like miniature ball bearings and by the formation of tribofilms on the surfaces of the moving parts. According to Dr. Niles Fleischer, VP of Business and Product Development, "When used as an additive to liquid oil or grease, the inorganic fullerenes significantly enhance the lubricating properties of the fluid with respect to wear and friction by an order of magnitude versus the same lubricant without this additive". Based on the inorganic fullerenes, ApNano Materials developed NanoLubŪ, the world's first commercial nanotechnology-based solid lubricant. NanoLub-based enhanced lubricants are being sold in various markets around the world today.


About ApNano Materials, Inc.
ApNano Materials ( is a private nanotechnology company founded in 2002 by Dr. Menachem Genut, President and CEO and Mr. Aharon Feuerstein, Chairman and CFO. ApNano Materials was incorporated in the US and is headquartered in New York, USA. Its fully-owned Israeli subsidiary - NanoMaterials, Ltd., is located in the high tech science park adjacent to the Weizmann Institute campus in Ness Ziona, Israel. The company was granted an exclusive license by Yeda Research and Development Co. Ltd, the commercial arm of the Weizmann Institute of Science, Israel, to manufacture, commercialize and sell a new class of nanomaterials based on inorganic compounds that were discovered at the Institute. The shareholders of ApNano Materials, besides the founders, are Newton Technology VC Fund, Yeda Research and Development Co. LTD. (the commercial arm of the Weizmann Institute of Science), AYYT Technological Applications and Date Update LTD. (the commercial arm of Holon Institute of Technology (HIT), Israel), and private European investors.

NanoLub, a green, environmentally friendly material, is a registered trademark of ApNano Materials, Inc.

For more information, please click here

David Kanaan
Kanaan Public Relations
Tel.: +972-3-5408188
Mobile phone: +972-54-4255307

Copyright © ApNano Materials, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Exotic property confirmed in natural material could lead to fundamental studies October 6th, 2016

Nanotech Grants Options September 22nd, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Leti and Oberthur Technologies Partner to Explore New Solutions in Fast-growing Digital Era September 12th, 2016


Self-healable battery Lithium ion battery for electronic textiles grows back together after breaking October 20th, 2016

Scientists find technique to improve carbon superlattices for quantum electronic devices: In a paradigm shift from conventional electronic devices, exploiting the quantum properties of superlattices holds the promise of developing new technologies October 20th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016


KaSAM-2016: International Conference on Material Sciences has successfully concluded in Pokhara of Western Nepal October 24th, 2016

Move over, solar: The next big renewable energy source could be at our feet October 20th, 2016

Smashing metallic cubes toughens them up: Rice University scientists fire micro-cubes at target to change their nanoscale structures October 20th, 2016

Study explains strength gap between graphene, carbon fiber: Rice University researchers simulate defects in popular fiber, suggest ways to improve it October 19th, 2016


When quantum scale affects the way atoms emit and absorb particles of light: Exact simulation lifts the 80-year-old mystery of the degree to which atoms can be dressed with photons October 24th, 2016

Nanoantenna lighting-rod effect produces fast optical switches October 24th, 2016

New nanomedicine approach aims to improve HIV drug therapies October 24th, 2016

New method increases energy density in lithium batteries: Novel technique may lead to longer battery life in portable electronics and electrical vehicles October 24th, 2016

Homeland Security

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016


Unusual quantum liquid on crystal surface could inspire future electronics October 22nd, 2016

New perovskite solar cell design could outperform existing commercial technologies: Stanford, Oxford team creates high-efficiency tandem cells October 21st, 2016

Study explains strength gap between graphene, carbon fiber: Rice University researchers simulate defects in popular fiber, suggest ways to improve it October 19th, 2016

Study finds surface texture of gallium nitride affects cell behavior October 17th, 2016

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project