Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > ApNano Materials Announces Major Breakthrough in Industrial Nanotube Production for Bullet Proof Vests

Abstract:
ApNano Materials, Inc., a provider of nanotechnology-based products, today announced a major breakthrough in the production of the company's unique, inorganic tungsten disulfide (WS2) nanotubes in industrial quantities.

ApNano Materials Announces Major Breakthrough in Industrial Nanotube Production for Bullet Proof Vests

New York, NY | Posted on June 30th, 2008

The synthetic route developed opens new doors to large scale production of such nanotubes for a variety of commercial markets. The inorganic nanotubes have exhibited revolutionary chemical and physical properties that enable a wide range of applications.

Inorganic WS2 nanotubes are a ultra-strong impact resistant material making them excellent candidates for producing bullet proof vests, helmets, car bumpers, high strength glues and binders, and other personal safety equipment for saving lives and preventing injuries. The unique nanotubes are up to 4-5 times stronger than steel and about 6 times stronger than Kevlar, a popular material used for bullet proof vests.

In addition to ballistic protection materials and polymer composites, WS2 nanotubes can be implemented in nanoelectronics, fuel cells, ultra-filtration membranes and catalysts. For example, since these nanotubes are semi-conductors they can be used in products such as advanced high resolution flat panel displays and as tips for atomic force microscopes (AFMs). The optical properties of the inorganic nanotubes enable numerous other applications in the fields of nanolithography, photocatalysis and other fields.

The nanotubes are relatively long with respect to their diameter and it is this high aspect ratio property that gives them their unique strength and chemical properties. Laboratory experiments conducted by Nobel Laureate Professor Sir Harold Kroto and his colleagues have demonstrated that ApNano's nanotubes are strong enough to withstand a pressure of 21 GPa (Gigapascal) - the equivalent of 210 tons per square centimeter, Dimensions are up to 150 microns in length and 30 to 180 nanometers in diameter. In fact the diameters of these nanotubes are so small that a thousand of them can fit across the width of a single human hair.

"The synthesis of the WS2 and other inorganic nanotubes was investigated by Prof. Reshef Tenne at the Weizmann Institute of Science (WIS), Israel, during the last 16 years. These investigations resulted in the synthesis of a few milligrams of pure nanotubes or mixture of nanotubes with flat and spherical nanoparticles," said Dr. Alla Zak, Chief Scientist of ApNano Materials. "The process, however, was extremely difficult to scale up. Based on this knowledge, ApNano Materials elaborated a new design for a reactor which enables the production of pure WS2 nanotubes in commercial quantities. This new process also eliminates the most problematic part of conventional nanotubes synthesis - the need to separate the nanotubes from the rest of the material. In ApNano's novel reactor pure nanotubes have been obtained. I am confident that further optimization of the synthetic process will result in additional increases in nanotube production."

"The new breakthrough in synthesizing WS2 nanotubes is another milestone in our continued strategy and efforts to offer unique nanotechnology-based product lines," said Dr. Menachem Genut, President and CEO of ApNano Materials. "In addition to new products, we are constantly searching for new methods that will enable us to enhance bulk production processes." Dr. Genut was a research fellow in the original research group which discovered the inorganic nanoparticles and the inorganic nanotubes at the Weizmann Institute of Science, Israel, and first to synthesize the new material. The group was led by Professor Reshef Tenne, currently the Director of Helen and Martin Kimmel Center for Nanoscale Science at the Weizmann Institute.

"Our inorganic nanotubes address very fast growing markets. It will open new opportunities for ApNano Materials, with the potential for generating considerable revenues," said Aharon Feuerstein, ApNano Materials' Chairman and CFO.

In addition to nanotubes, ApNano Materials produces other particles of tungsten disulfide that have a structure of nested spheres, called inorganic fullerenes, which lubricate mainly by rolling like miniature ball bearings and by the formation of tribofilms on the surfaces of the moving parts. According to Dr. Niles Fleischer, VP of Business and Product Development, "When used as an additive to liquid oil or grease, the inorganic fullerenes significantly enhance the lubricating properties of the fluid with respect to wear and friction by an order of magnitude versus the same lubricant without this additive". Based on the inorganic fullerenes, ApNano Materials developed NanoLubŪ, the world's first commercial nanotechnology-based solid lubricant. NanoLub-based enhanced lubricants are being sold in various markets around the world today.

####

About ApNano Materials, Inc.
ApNano Materials (www.apnano.com) is a private nanotechnology company founded in 2002 by Dr. Menachem Genut, President and CEO and Mr. Aharon Feuerstein, Chairman and CFO. ApNano Materials was incorporated in the US and is headquartered in New York, USA. Its fully-owned Israeli subsidiary - NanoMaterials, Ltd., is located in the high tech science park adjacent to the Weizmann Institute campus in Ness Ziona, Israel. The company was granted an exclusive license by Yeda Research and Development Co. Ltd, the commercial arm of the Weizmann Institute of Science, Israel, to manufacture, commercialize and sell a new class of nanomaterials based on inorganic compounds that were discovered at the Institute. The shareholders of ApNano Materials, besides the founders, are Newton Technology VC Fund, Yeda Research and Development Co. LTD. (the commercial arm of the Weizmann Institute of Science), AYYT Technological Applications and Date Update LTD. (the commercial arm of Holon Institute of Technology (HIT), Israel), and private European investors.

NanoLub, a green, environmentally friendly material, is a registered trademark of ApNano Materials, Inc.

For more information, please click here

Contacts:
David Kanaan
Kanaan Public Relations
Tel.: +972-3-5408188
Mobile phone: +972-54-4255307

Copyright © ApNano Materials, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

World's smallest spirals could guard against identity theft June 4th, 2015

New sensing tech could help detect diseases, fraudulent art, chemical weapons June 1st, 2015

Nanotech Secures Additional Patents in Advanced Security Features: New patented features gain attention from the banknote industry May 30th, 2015

Better sensors for medical imaging, contraband detection: Magnetic-field detector is 1,000 times more efficient than its predecessors April 6th, 2015

Nanotubes/Buckyballs/Fullerenes

Better together: Graphene-nanotube hybrid switches August 3rd, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Materials/Metamaterials

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Announcements

Quantum states in a nano-object manipulated using a mechanical system August 3rd, 2015

Nanoparticles used to breach mucus barrier in lungs: Proof-of-concept study conducted in mice a key step toward better treatments for lung diseases August 3rd, 2015

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Homeland Security

Nanopaper as an optical sensing platform July 23rd, 2015

Iranian Scientists Design Nano Device to Detect Cyanogen Toxic Gas June 23rd, 2015

New sensing tech could help detect diseases, fraudulent art, chemical weapons June 1st, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Military

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Take a trip through the brain July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project