Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Moving molecules within molecules

Abstract:
Experts in the field of nanoscience have discovered a way of controlling the motion and detecting the forces that move molecules within molecules.

Moving molecules within molecules

UK | Posted on May 30th, 2008

Their ground-breaking discovery could play a major role in the development of nanomechanical devices. For instance — looking far into the future it could transform the way computer microchips are assembled reducing the size of computers and at the same time making them much more powerful.



This research at the nano scale — 10 nanometers (nm) is 10,000 times smaller than the diameter of a human hair — is so fundamental that the applications are, for the time being, purely hypothetical. However, it helps in understanding of how molecules can be manipulated and positioned at the single-molecule level. It could lead to the use of molecules as components for electronic devices and could also lead to significant applications for biomedical sciences and sensors technology.



Researchers at The University of Nottingham are among a team of experts from across the globe, led by Dr Makoto Ashino at the University of Hamburg, who have measured the mechanical responses of molecules to the atom at the tip of an atomic force microscope.



The research has been published in Nature Nanotechnology. The online version is available at http://www.nature.com/nnano/journal/vaop/ncurrent/abs/nnano.2008.126.html.



In collaboration with experts at the University of Hamburg, the Max Planck Institute for Solid State Research in Germany, the Technical University of Eindhoven in the Netherlands and The Hong Kong University of Science and Technology, researchers at The University of Nottingham have played a key role in this ground-breaking discovery.



Dr Andrei Khlobystov, Associate Professor and Reader in Chemical Nanosciences in the School of Chemistry, specialises in the chemistry of carbon nanostructures — with a particular emphasis on the chemistry inside carbon nanotubes — using the nanotube with a typical diameter of 1-2 nm as a miniature test tube.



Dr Khlobystov designed a structure of carbon nanotubes in which the movement and response of the molecules could be measured. He said: "It was a long and iterative process, but eventually I developed a technique which allowed us to fill nanotubes with molecules and at the same time to keep nanotubes well-dispersed."



The crucial experiments were carried out by Dr Makoto Ashino from the Institute of Applied Physics and Microstructure Research Centre, University of Hamburg. Using the materials prepared by Dr Kholbystov he probed the structures with dynamic non-contact atomic force microscopy (AFM) — a high resolution type of atomic force microscope capable of producing a three dimensional profile of surface structures measuring attractive forces within just fractions of a nanometer.



In addition to studying the surface topography of these structures the team simultaneously measured the energy lost by the vibrating tip of the AFM as it moved over the surface of the structures.



Nanotechnology is so small powerful microscopes are needed just to see it but it has already had a huge impact on our everyday lives. Nanotechnology is used in sports, clothing, motoring, engineering, medicines and forensics.



Scientists have been able to confine small molecules inside larger molecules for a number of years. They have even been able to watch the movement of the smaller molecules inside molecules. However, until now, it has not been possible to control this motion or measure the forces that move the smaller molecules.



Dr Ashino said: "Our achievements are directly related to the development of nanomechanical devices. We have shown that the manipulation of individual molecular oscillations can be activated by the energy transfer from a truly mechanical oscillator via the nanotube to the molecule. The site-specific control of individual dynamic motions in a chain of molecules can be important for the future development and precise control of nano-molecular machines and nano-transporters (i.e. long-distance transporting of individual molecules), as well as for ultra-sensitive molecular sensors."

####

About University of Nottingham
The University of Nottingham is ranked in the UK's Top 10 and the World's Top 70 universities by the Shanghai Jiao Tong (SJTU) and Times Higher (THE) World University Rankings.

It provides innovative and top quality teaching, undertakes world-changing research, and attracts talented staff and students from 150 nations. Described by The Times as Britain's "only truly global university", it has invested continuously in award-winning campuses in the United Kingdom, China and Malaysia.



Twice since 2003 its research and teaching academics have won Nobel Prizes. The University has won the Queen's Award for Enterprise in both 2006 (International Trade) and 2007 (Innovation — School of Pharmacy).



Its students are much in demand from 'blue-chip' employers. Winners of Students in Free Enterprise for four years in succession, and current holder of UK Graduate of the Year, they are accomplished artists, scientists, engineers, entrepreneurs, innovators and fundraisers. Nottingham graduates consistently excel in business, the media, the arts and sport. Undergraduate and postgraduate degree completion rates are amongst the highest in the United Kingdom.

For more information, please click here

Contacts:
Andrei Khlobystov
+44 (0)115 9513917

Makoto Ashino

or
Media Relations Manager
Lindsay Brooke
University's Communications Office
+44 (0)115 9515751

Copyright © University of Nottingham

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Molecular Machines

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Molecular Nanotechnology

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Fast, cheap nanomanufacturing: Arrays of tiny conical tips that eject ionized materials could fabricate nanoscale devices cheaply October 4th, 2014

Nano-bearings on the test bench: Fullerene spheres can be used to slide in the nanoworld October 3rd, 2014

Penn Team Studies Nanocrystals by Passing Them Through Tiny Pores September 26th, 2014

Sensors

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Graphenea opens US branch October 16th, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE