Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > FEST Award Promotes Innovative Nanoelectronics Research

    Avik Ghosh 

    (Photo: Melissa Maki)
Avik Ghosh
(Photo: Melissa Maki)

Abstract:
Avik Ghosh, assistant professor of electrical and computer engineering at the University of Virginia, recently won an internal Fund for Excellence in Science and Technology Distinguished Young Investigator Grant for a research proposal that could ultimately transform transistor technology.

FEST Award Promotes Innovative Nanoelectronics Research

Charlottesville, VA | Posted on May 28th, 2008

Transistors are tiny devices that control electric current and voltage. Considered a pivotal invention of the 20th century, they are a key component of computer chips as well as most other modern electronic devices. Currently available transistors are comprised of silicon, but the demand for smaller and more powerful electronic gadgets has uncovered the limitations of silicon transistor technology, including problems with heat dissipation and processing speed.

Enter Ghosh, who specializes in evaluating the properties of materials at the nanoscale by using high-powered computational techniques and physics. Ghosh notes that researchers have been working for years to scale down transistors and make them faster, cheaper and more reliable. One approach to this challenge involves the exploration of new materials.

One of the most recent materials to show theoretical promise is the graphene nanoribbon — a ribbony layer of graphite that is only an atom thick. Ghosh's FEST-backed research will explore the properties of graphene nanoribbons to determine whether they may consistently provide advantages in electrical conductivity that would rival silicon. Initial research has shown that graphene nanoribbons may enable devices with superior electrical properties, potentially resulting in transistors that are intrinsically much faster than those that are currently available.

Ghosh's expertise is in modeling and simulation on the atomic scale, and he has already established both internal and external collaborations in physics, chemistry and materials science to assist with his ambitious research. "Our group is theoretical, but we partner with experimentalists who are trying to build devices," said Ghosh. "We need experiments both to benchmark our theories and to test our predictions."

With the FEST funding, Ghosh will be able to hire a graduate student for a year to get the initial results and proof of concept to establish the capabilities of graphene-based devices and a fuller understanding of their advantages and disadvantages. Ghosh's goal is to be able to pattern an entire circuit out of graphene, using a combination of existing practices and new techniques.

Research on graphene-based devices has gained momentum of late, but Ghosh believes his holistic, interdisciplinary approach, which is focused on electronics applications, makes his work stand out from the rest. "What's unique about us is that we are actually partnering with experimentalists and the circuit theorists and trying to get a total story about graphene, not just a piecemeal part of the story," he said.

The FEST Distinguished Young Investigator Grant Program is administered by U.Va.'s Office of the Vice President for Research and Graduate Studies and supports junior faculty research in the sciences, engineering and medicine.

More information about Ghosh's work and other related research can be found on the Virginia nano-computing Web site (www.ece.virginia.edu/vino/home.html).

####

For more information, please click here

Contacts:
Melissa Maki
(434) 243-2203

Copyright © University of Virginia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Nanoelectronics

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Carbodeon enables 20 percent increase in polymer thermal filler conductivity with 0.03 wt.% nanodiamond additive at a lower cost than with traditional fillers: Improved materials and processes enable nanodiamond cost reductions of up to 70 percent for electronics and LED app July 9th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Albany NanoCollege Faculty Member Selected as Editor-in-Chief of the Prestigious Journal of Electronic Materials July 1st, 2014

NSERC Boosts Funding for Waterloo Researchers on the Verge of a Breakthrough June 27th, 2014

One step to solar-cell efficiency: Rice University researchers’ chemical process may improve manufacturing June 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE