Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > FEST Award Promotes Innovative Nanoelectronics Research

    Avik Ghosh 

    (Photo: Melissa Maki)
Avik Ghosh
(Photo: Melissa Maki)

Abstract:
Avik Ghosh, assistant professor of electrical and computer engineering at the University of Virginia, recently won an internal Fund for Excellence in Science and Technology Distinguished Young Investigator Grant for a research proposal that could ultimately transform transistor technology.

FEST Award Promotes Innovative Nanoelectronics Research

Charlottesville, VA | Posted on May 28th, 2008

Transistors are tiny devices that control electric current and voltage. Considered a pivotal invention of the 20th century, they are a key component of computer chips as well as most other modern electronic devices. Currently available transistors are comprised of silicon, but the demand for smaller and more powerful electronic gadgets has uncovered the limitations of silicon transistor technology, including problems with heat dissipation and processing speed.

Enter Ghosh, who specializes in evaluating the properties of materials at the nanoscale by using high-powered computational techniques and physics. Ghosh notes that researchers have been working for years to scale down transistors and make them faster, cheaper and more reliable. One approach to this challenge involves the exploration of new materials.

One of the most recent materials to show theoretical promise is the graphene nanoribbon — a ribbony layer of graphite that is only an atom thick. Ghosh's FEST-backed research will explore the properties of graphene nanoribbons to determine whether they may consistently provide advantages in electrical conductivity that would rival silicon. Initial research has shown that graphene nanoribbons may enable devices with superior electrical properties, potentially resulting in transistors that are intrinsically much faster than those that are currently available.

Ghosh's expertise is in modeling and simulation on the atomic scale, and he has already established both internal and external collaborations in physics, chemistry and materials science to assist with his ambitious research. "Our group is theoretical, but we partner with experimentalists who are trying to build devices," said Ghosh. "We need experiments both to benchmark our theories and to test our predictions."

With the FEST funding, Ghosh will be able to hire a graduate student for a year to get the initial results and proof of concept to establish the capabilities of graphene-based devices and a fuller understanding of their advantages and disadvantages. Ghosh's goal is to be able to pattern an entire circuit out of graphene, using a combination of existing practices and new techniques.

Research on graphene-based devices has gained momentum of late, but Ghosh believes his holistic, interdisciplinary approach, which is focused on electronics applications, makes his work stand out from the rest. "What's unique about us is that we are actually partnering with experimentalists and the circuit theorists and trying to get a total story about graphene, not just a piecemeal part of the story," he said.

The FEST Distinguished Young Investigator Grant Program is administered by U.Va.'s Office of the Vice President for Research and Graduate Studies and supports junior faculty research in the sciences, engineering and medicine.

More information about Ghosh's work and other related research can be found on the Virginia nano-computing Web site (www.ece.virginia.edu/vino/home.html).

####

For more information, please click here

Contacts:
Melissa Maki
(434) 243-2203

Copyright © University of Virginia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Nanoelectronics

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX® Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Announcements

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project