Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Dendrimers Improve Imaging With Magnetic Nanoparticles

Abstract:
Dendrimers are spherical polymer nanoparticles that have shown promise as targeted anticancer drug delivery vehicles. Iron oxide nanoparticles have already demonstrated the ability to image tumors and metastatic lesions. Now, researchers at the University of Michigan have combined the two, producing a layered nanoscale construct that targets and images tumors in animal models of human cancer.

Dendrimers Improve Imaging With Magnetic Nanoparticles

Bethesda , MD | Posted on May 21st, 2008

Reporting its work in the journal Advanced Materials, a team of investigators led by James Baker, Jr., M.D., who heads 1 of 12 NCI-funded Cancer Nanotechnology Platform Partnerships, created its nanoparticle construct with the aim of targeting iron oxide nanoparticles to tumors. Previous attempts to add targeting molecules directly to iron oxide nanoparticles have had limited success because the resulting nanoparticles were not stable in the bloodstream and were removed quickly from circulation by immune system cells.

In this study, the investigators' first attempt at linking dendrimers to iron oxide nanoparticles was successful, but the resulting nanoscale construct accumulated largely in the liver rather than in tumors in test animals. Further investigation suggested that this construct was not stable in the body. To remedy this problem, the researchers first coated the iron oxide nanoparticles with multiple thin layers of two different polymers, poly(glutamic acid) and poly(l-lysine). Next, they added a layer of dendrimers that contained the tumor-targeting molecule folic acid and a fluorescent dye. Then, in a final step, the investigators chemically linked the multiple layers to one another, creating a stable shell of dendrimer and polymer on an iron oxide nanoparticle core.

Tests using both tumor cells growing in culture and in mice with human tumors showed that this new construct bound specifically to tumor cells that overexpress a receptor for folic acid. MRI was able to easily detect tumors in mice. MRI studies also showed that the hybrid shell-core construct accumulated far more in tumors than in liver, kidney, or spleen.

This work, which was supported by the NCI's Alliance for Nanotechnology in Cancer, is detailed in the paper "Dendrimer-Functionalized Shell-crosslinked Iron Oxide Nanoparticles for In-Vivo Magnetic Resonance Imaging of Tumors." There is no abstract available for this paper, but a citation is available at the journal's Web site.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View citation

Related News Press

Imaging

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

News and information

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Nanomedicine

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Discoveries

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Cacao Seed Extract Used in Production of Catalytic Nanoparticles April 27th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project