Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > SEMATECH Researchers Demonstrate High-k Metal Gates for 22 nm Node and Advancements Resulting in Practical FinFETs and High Mobility Ge Channels

Abstract:
SEMATECH researchers are presenting trend-setting research results in extending CMOS logic and memory technologies at the International Symposium on VLSI Technology, System and Applications (VLSI-TSA) this week. The new materials, processes and concepts discussed in a series of seven research papers describe how current semiconductor technologies can benefit from performance-enhancing features for future scaling needs.

SEMATECH Researchers Demonstrate High-k Metal Gates for 22 nm Node and Advancements Resulting in Practical FinFETs and High Mobility Ge Channels

HSINCHU, Taiwan | Posted on April 21st, 2008

"Our goal is to harness advanced new materials and device structures for continued scaling of semiconductor technologies by augmenting performance," said Raj Jammy, SEMATECH director of Front End Processes. "These papers show innovative and practical pathways that can easily be incorporated in real-world manufacturing environments."

The papers were selected from hundreds of submissions, and are being presented by an international team of researchers. They discuss leading-edge research into areas such as high-k/metal gate (HKMG) materials, flash memory, planar and non-planar CMOS technologies including exciting new finFET designs, which offer additional control on the channel or body of the device by using a controlling gate wrapped around a thin silicon "fin".

* Gate First Band Edge High-k/Metal Stacks with EOT = 0.74 nm for 22 nm Node nFETs - demonstrates innovative materials engineering to develop high-k dielectrics and silicon band-edge nFET metal gates for future scaled nodes
* Achieving Low Vt < -0.3 V and Thin EOT 1.0 nm in Gate First Metal/High-k pMOSFET for High-Performance CMOS Applications - describes the use of new aluminum oxide derivative HKMG material to achieve low threshold voltage pFET devices with an aggressive EOT suitable for 32 nm generation devices
* Enhanced Performance and SRAM Stability in FinFET and Reduced Process Steps for Source/Drain Doping - explores an implementation of an innovative finFET design that optimizes performance for next-generation 22 nm and beyond technologies
* Controlled Threshold Voltage of High-Mobility Germanium (Ge) pMOSFETs with High-k/metal Gate on Epitaxial Ge Films on Si Substrates - explores the use of ultra-thin high mobility germanium (Ge) channels directly but selectively on silicon. Ge, the original semiconductor material may now improve performance in silicon-based technology

* Tunnel Oxide Dipole Engineering in TANOS Flash Memory for Fast Programming with Good Retention and Endurance - explores new designs in flash memory with dramatically improved performance by making use of dipole engineering to improve key performance metrics
* Understanding Strain Effects on Double-Gate FinFET Drive-Current Enhancement, Hot Carrier Reliability and Ring-Oscillator Delay Performance via Uniaxial Wafer Bending Experiments - explores FinFET performance characteristics and reliability under the effects of controlled stress, which is a common approach to boost performance in CMOS devices
* Physical Characteristics of HfO2 Dielectrics at the Physical Scaling Limit - explores characterization of highly scaled hafnium oxide (HfO2) films on advanced systems to obtain better understanding of the fundamental physical nature of the material at the atomic level. Such learning is directly applicable to improve the performance of future generations of HKMG devices.

These papers represent SEMATECH's research on second generation HKMG systems and follow the consortium's 2007 announcement of practical first generation HKMG systems, the result of 10 years' painstaking investigation and innovation. HKMG implementation by leading-edge manufacturers is helping them to transcend the limitations of increasingly condensed surface areas, showing significant performance and power consumption advantages over traditional approaches.

The International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA) is sponsored by the Institute of Electrical and Electronics Engineers, or IEEE, a leading professional association for the advancement of technology in association with Taiwan's Industrial Technology Research Institute (ITRI). VLSI-TSA runs from April 21-23 and provides a platform for technical exchanges by experts from around the world. It is one of many industry forums SEMATECH uses to collaborate with scientists and engineers from corporations, universities and other research institutions, many of whom are research partners.

####

About SEMATECH
SEMATECH is an international consortium of semiconductor manufacturers and suppliers that improves members’ return on investment by driving fundamental innovations in technology, emerging platforms and approaches. In over 20 years of producing industry-changing breakthrough technology, SEMATECH has led the push into successive waves of next-generation innovations, from high-k materials to nanotechnology, that move discovery into practical application.

For 20 years, SEMATECH® (www.sematech.org), the global consortium of leading semiconductor manufacturers, has set global direction, enabled flexible collaboration, and bridged strategic R&D to manufacturing. Today, we continue accelerating the next technology revolution with our nanoelectronics and emerging technology partners.

For more information, please click here

Contacts:
SEMATECH
Anne Englander
512-356-7155

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Chip Technology

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Nanoelectronics

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Announcements

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Events/Classes

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE