Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Braggone Receives Multi-Million Dollar Funding to Commercialize Nano-Engineered Polymer Technology for Semiconductor, Solar Panel and Flat Panel Disp

Abstract:
TEKES, the Same Funding Agency That Backed Nokia, Invests in Optoelectronics Company for Materials That Can Be "Custom Tuned" for Application Needs

Braggone Receives Multi-Million Dollar Funding to Commercialize Nano-Engineered Polymer Technology for Semiconductor, Solar Panel and Flat Panel Disp

OULU, Finland | Posted on January 3rd, 2008

Braggone, the optoelectronics materials company, has received multi-million dollar funding from TEKES (The National Technology Agency of Finland) to commercialize their polymer materials for worldwide commercialization. TEKES is the same funding agency behind Nokia's dramatic success in the cell phone market.

Semiconductor devices and flat panel displays are primary targets

Braggone's proprietary material technology allows for custom tuning of the inorganic-organic polymer material properties to suit specific applications. These flexible yet stable materials coat or print onto substrates at greater efficiency, lower temperatures and higher yields. The company's current materials products are applied in digital displays used in mobile phones and televisions, advanced semiconductors, digital cameras, photovoltaic panels, LEDs and memory for PCs and MP3 devices. The TEKES funding is specifically targeted for taking the materials production and sales from the lab to commercial scales. These materials are part of an intellectual property portfolio of 17 filed patents, four of which have already been granted.

The research for the semiconductor industry has resulted in a unique set of materials that are nano-engineered siloxane compounds for silicon containing anti-reflective coatings (ARCs).

"We've had great success working in collaboration with chemical companies and equipment manufacturers to fine-tune and optimize the physical and application specific characteristics of these polymers," commented Dr. Yrjö Ojasaar, Braggone CEO. "Due to that collaboration and now with the additional funding from TEKES, we are on a rapid path to commercialization, as we can deliver PV manufacturers with increased performance and reduced costs all in one turnkey solution."

Nano-engineered materials can also revolutionize solar cell and panel manufacturing

Out of this same polymer research, Braggone recently announced a new product line that greatly increases the efficiency of solar cells and allows manufacturing facilities to cost-effectively increase their capacity. The custom designed compounds can dramatically reduce reflection from glass and silicon, and therefore, deliver substantially more light to the active regions of the solar cell, resulting in higher efficiencies. Even when compared to materials such as silicon nitride, the Braggone materials can cut reflection by half and costs associated with deposition tools by even more than half. By incorporating Braggone's unique materials into the manufacturing process, the costs of manufacturing solar cells can be dramatically reduced. Braggone tunes the optics of the cell by spray, slit, spin, or dip coating layers of molecularly tailored material, rather than having to use expensive chemical vapor deposition (CVD) tools.

Ojasaar added: "Our technology and materials for solar cells will make the dream of sub-one euro per peak watt manufacturing costs a reality. We can replace the CVD batch process, expensive capex, and expensive operating costs by simply spraying, slit or dip coating the anti-reflective and hydrogenation coatings in a rapid and cost-effective atmospheric in-line process."

####

About Braggone
With offices located in Oulu, Finland, London, UK, and Hong Kong, SAR China, Braggone is an innovative technology company focused on the manufacturing of advanced optoelectronic and information electronic materials and components. Braggone’s portfolio of materials and processes are utilized to improve performance and facilitate production for various component and system structures. Through fundamental materials development and advanced process applications, Braggone works closely with its clients to increase their products’ performance in flat panel displays, semiconductors, LEDs and solar cells.

For more information, please click here

Contacts:
Braggone
Yrjo Ojasaar, +358.40.356.0262

or
Kirkpatrick Communications
Bruce Kirkpatrick, +1 925-244-9100

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Display technology/LEDs/SS Lighting/OLEDs

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Graphene oxide making any material suitable to create biosensors: Scientists from Tomsk Polytechnic University have developed a new tool for biomedical research focused on single-cell investigation November 27th, 2017

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Atomic scale Moiré patterns to push electronic boundaries? November 1st, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

VC/Funding/Angel financing/Loans/Leases/Crowdfunding

180 Degree Capital Corp. Leads Investment in TheStreet, Inc.; Investment Enables Removal of Capital Structure Overhang November 14th, 2017

Chip Technology

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Leti Breakthroughs Point Way to Significant Improvements in SoC Memories December 6th, 2017

Materials/Metamaterials

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Announcements

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Solar/Photovoltaic

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project