Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Braggone Receives Multi-Million Dollar Funding to Commercialize Nano-Engineered Polymer Technology for Semiconductor, Solar Panel and Flat Panel Disp

Abstract:
TEKES, the Same Funding Agency That Backed Nokia, Invests in Optoelectronics Company for Materials That Can Be "Custom Tuned" for Application Needs

Braggone Receives Multi-Million Dollar Funding to Commercialize Nano-Engineered Polymer Technology for Semiconductor, Solar Panel and Flat Panel Disp

OULU, Finland | Posted on January 3rd, 2008

Braggone, the optoelectronics materials company, has received multi-million dollar funding from TEKES (The National Technology Agency of Finland) to commercialize their polymer materials for worldwide commercialization. TEKES is the same funding agency behind Nokia's dramatic success in the cell phone market.

Semiconductor devices and flat panel displays are primary targets

Braggone's proprietary material technology allows for custom tuning of the inorganic-organic polymer material properties to suit specific applications. These flexible yet stable materials coat or print onto substrates at greater efficiency, lower temperatures and higher yields. The company's current materials products are applied in digital displays used in mobile phones and televisions, advanced semiconductors, digital cameras, photovoltaic panels, LEDs and memory for PCs and MP3 devices. The TEKES funding is specifically targeted for taking the materials production and sales from the lab to commercial scales. These materials are part of an intellectual property portfolio of 17 filed patents, four of which have already been granted.

The research for the semiconductor industry has resulted in a unique set of materials that are nano-engineered siloxane compounds for silicon containing anti-reflective coatings (ARCs).

"We've had great success working in collaboration with chemical companies and equipment manufacturers to fine-tune and optimize the physical and application specific characteristics of these polymers," commented Dr. Yrjö Ojasaar, Braggone CEO. "Due to that collaboration and now with the additional funding from TEKES, we are on a rapid path to commercialization, as we can deliver PV manufacturers with increased performance and reduced costs all in one turnkey solution."

Nano-engineered materials can also revolutionize solar cell and panel manufacturing

Out of this same polymer research, Braggone recently announced a new product line that greatly increases the efficiency of solar cells and allows manufacturing facilities to cost-effectively increase their capacity. The custom designed compounds can dramatically reduce reflection from glass and silicon, and therefore, deliver substantially more light to the active regions of the solar cell, resulting in higher efficiencies. Even when compared to materials such as silicon nitride, the Braggone materials can cut reflection by half and costs associated with deposition tools by even more than half. By incorporating Braggone's unique materials into the manufacturing process, the costs of manufacturing solar cells can be dramatically reduced. Braggone tunes the optics of the cell by spray, slit, spin, or dip coating layers of molecularly tailored material, rather than having to use expensive chemical vapor deposition (CVD) tools.

Ojasaar added: "Our technology and materials for solar cells will make the dream of sub-one euro per peak watt manufacturing costs a reality. We can replace the CVD batch process, expensive capex, and expensive operating costs by simply spraying, slit or dip coating the anti-reflective and hydrogenation coatings in a rapid and cost-effective atmospheric in-line process."

####

About Braggone
With offices located in Oulu, Finland, London, UK, and Hong Kong, SAR China, Braggone is an innovative technology company focused on the manufacturing of advanced optoelectronic and information electronic materials and components. Braggone’s portfolio of materials and processes are utilized to improve performance and facilitate production for various component and system structures. Through fundamental materials development and advanced process applications, Braggone works closely with its clients to increase their products’ performance in flat panel displays, semiconductors, LEDs and solar cells.

For more information, please click here

Contacts:
Braggone
Yrjo Ojasaar, +358.40.356.0262

or
Kirkpatrick Communications
Bruce Kirkpatrick, +1 925-244-9100

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Yale researchers’ technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Display technology/LEDs/SS Lighting/OLEDs

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Graphene-based transparent electrodes for highly efficient flexible OLEDS: A Korean research team developed an ideal electrode structure composed of graphene and layers of titanium dioxide and conducting polymers, resulting in highly flexible and efficient OLEDs June 5th, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

VC/Funding/Angel financing/Loans/Leases/Crowdfunding

NanoLabNL boosts quality of research facilities as Dutch Toekomstfonds invests firmly June 10th, 2016

Chip Technology

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Nanometrics to Participate in the 8th Annual CEO Investor Summit: Investor Event Held Concurrently with SEMICON West 2016 in San Francisco June 22nd, 2016

Materials/Metamaterials

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Coexistence of superconductivity and charge density waves observed June 23rd, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Announcements

Yale researchers’ technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Energy

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Solar/Photovoltaic

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

New generation of high-efficiency solar thermal absorbers developed June 20th, 2016

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic