Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Alzheimer's intermediate characterised by SS NMR

January 1st, 2008

Alzheimer's intermediate characterised by SS NMR

Abstract:
A team of chemists at the University of Illinois Chicago has characterized the molecular structure of a molecular intermediate in the development of Alzheimer's disease. Using NMR the team has identified a precursor to the misfolded proteins known as plaque-forming amyloid, which is involved in Alzheimer's disease. The same results may also provide clues to understanding and treating Parkinson's and Creutzfeldt-Jakob disease which also involve protein misfolding.

Effective treatment for Alzheimer's remains elusive despite the best efforts of biomedical researchers and drug discovery teams the world over. One of the problems facing drug developers is how to explain the role of amyloid plaques. Whether or not they are a cause or a symptom of the disease is not yet known for sure, although they are certainly a hallmark of this debilitating and lethal disease. Amyloid fibrils are clumps of a fibre-like protein material that is misfolded and is present at nerve cells damaged in this devastating and tragic neurodegenerative diseases.

Now, Yoshitaka Ishii and his colleagues, Sandra Chimon, Medhat Shaibat, Christopher Jones, Diana Calero, and Buzulagu Aizezi, have trapped and characterized a crucial intermediate in the formation of amyloid plaque fibres, or fibrils, showing tiny spheres averaging just twenty nanometres in diameter assembling into sheet-like structures comparable to that seen in the formation of fibrils.

Source:
University of Illinois Chicago

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Heightened Efficiency in Purification of Wastewater Using Nanomembranes March 3rd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Molecular Machines

Monitoring the real-time deformation of carbon nanocoils under axial loading February 18th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image December 22nd, 2014

Discoveries

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Heightened Efficiency in Purification of Wastewater Using Nanomembranes March 3rd, 2015

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Breakthrough in OLED technology March 2nd, 2015

Announcements

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Heightened Efficiency in Purification of Wastewater Using Nanomembranes March 3rd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Nanobiotechnology

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Better batteries inspired by lowly snail shells: Biological molecules can latch onto nanoscale components and lock them into position to make high performing Li-ion battery electrodes, according to new research presented at the 59th annual meeting of the Biophysical Society February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE