Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Compact, wavelength-on-demand Quantum Cascade Laser chip offers ultra-sensitive chemical sensing

Abstract:
Engineers from Harvard University have demonstrated a highly versatile, compact and portable Quantum Cascade Laser sensor for the fast detection of a large number of chemicals, ranging from infinitesimal traces of gases to liquids, by broad tuning of the emission wavelength. The potential range of applications is huge, including homeland security, medical diagnostics such as breadth analysis, pollution monitoring, and environmental sensing of the greenhouse gases responsible for global warming.

Compact, wavelength-on-demand Quantum Cascade Laser chip offers ultra-sensitive chemical sensing

CAMBRIDGE, MA | Posted on December 3rd, 2007

The team, which will report its findings in the Dec. 3 issue of Applied Physics Letters, is headed by Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, and includes graduate student Benjamin Lee, researchers Mikhail Belkin and Jim MacArthur, and undergraduate Ross Audet, all of Harvard's School of Engineering and Applied Sciences. The researchers have also filed for U.S. patents covering this new class of laser chips.

The broad emission spectrum of the Quantum Cascade Laser material, grown by a commercial reactor used for the mass production of semiconductor lasers, is designed using state-of-the-art nanotechnology by controlling the size of nanometric thin quantum wells in the active region. An array of 32 lasers, each designed to emit at a specific wavelength, is then fabricated on a single chip by standard semiconductor processing techniques to have a size of less than one-fourth of a dime. A microcomputer individually fires up and tunes each laser in the array in any desired sequence. This generates a broad and continuously tunable wavelength spectrum that can be used to detect a large number of chemical compounds.

"Our versatile laser spectrometer currently emits any wavelengths between 8.7 and 9.4 microns, in the so-called 'molecular fingerprint region' where most molecules have their telltale absorption features which uniquely identify them," Belkin says. "This ability to design a broad laser spectrum anywhere in the fingerprint region holds the promise of replacing the bulky and large infrared spectrometers currently used for chemical analysis and sensing."

The tunability of the laser chip can be extended up to 10-fold and several widely spaced absorption features can be targeted with the same chip, which will enable the detection in parallel of an extremely large number of trace gases in concentrations of parts per billion in volume. A portable compact spectrometer with this capability would revolutionize chemical sensing.

"These millimeter-size laser chips exploit the inherent enormous wavelength agility of state-of-the-art Quantum Cascade Lasers," says Capasso, who co-invented them in 1994 at Bell Labs. "As a first application we have shown that these widely tunable and extremely compact sensors can measure the spectrum of liquids with the same accuracy and reproducibility of state-of-the-art infrared spectrometers, but with inherently greater spectral resolution."

The team's co-authors are research associates Laurent Diehl and Christian Pfl�gl of Harvard's School of Engineering and Applied Sciences; Doug Oakley, David Chapman, and Antonio Napoleone of MIT Lincoln Laboratory; David Bour, Scott Corzine, and Gloria H�fler, all formerly with Agilent Technologies; and J�r�me Faist of ETH Zurich. The research was supported by DARPA's Optofluidics Center. The authors also acknowledge the support of Harvard's Center for Nanoscale Systems, a member of the National Nanotechnology Infrastructure Network.

####

For more information, please click here

Contacts:
Eliza Grinnell

617-495-2871

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

Sensors

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Promising new method for rapidly screening cancer drugs: UMass Amherst researchers invent fast, accurate new nanoparticle-based sensor system December 15th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Discoveries

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Quantum physics just got less complicated December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Universality of charge order in cuprate superconductors: Charge order has been established in another class of cuprate superconductors, highlighting the importance of the phenomenon as a general property of these high-Tc materials December 22nd, 2014

Announcements

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Quantum physics just got less complicated December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Universality of charge order in cuprate superconductors: Charge order has been established in another class of cuprate superconductors, highlighting the importance of the phenomenon as a general property of these high-Tc materials December 22nd, 2014

Homeland Security

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Laser sniffs out toxic gases from afar: System can ID chemicals in the atmosphere from a kilometer away December 4th, 2014

Better bomb-sniffing technology: University of Utah engineers develop material for better detectors November 4th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Environment

Nanoparticles Prove Effective in Removing Phosphor from Calcareous Soil December 10th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Nanocatalysts Can Reduce Pollution Caused by Diesel Engines December 4th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE