Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers aim to harness sperm power for nano-robots

A mouse sperm. The long tail gets the energy it needs to swim from both mitochondria in the midpiece and glycolysis in the principal piece. Cornell scientists have borrowed a strategy from the sperm's principal piece in attempts to generate energy for nanodevices.
A mouse sperm. The long tail gets the energy it needs to swim from both mitochondria in the midpiece and glycolysis in the principal piece. Cornell scientists have borrowed a strategy from the sperm's principal piece in attempts to generate energy for nanodevices.

Abstract:
Researchers at Cornell are working to use the same energy that drives sperm to power nanoscale robots or to deliver chemo drugs or antibiotics, for example, to targeted sites within the body. The findings were presented at the American Society for Cell Biology's 47th annual meeting, Dec. 3, in Washington, D.C.

Researchers aim to harness sperm power for nano-robots

ITHACA, NY | Posted on December 3rd, 2007

By breaking down the individual steps in the biological pathway that sperm use to generate energy, the researchers plan to reproduce that pathway for use in a human-made device.

"Our idea is not the final product but rather an energy-delivery system," said Alex Travis, Cornell assistant professor of reproductive biology at the College of Veterinary Medicine's Baker Institute for Animal Health and the study's senior author.

"As a proof of principle that this kind of strategy could work, we've shown that the first two enzymes could be attached to the same chip and act in series," added Chinatsu Mukai, a postdoctoral associate in Travis' lab and a co-author.

A midsection between the head and the long tail of sperm contains mitochondria, organelles that generate a cell's power. But sperm have also developed a second energy source to power their long tail. They employ a process known as glycolysis, which breaks down glucose to derive ATP, which cells use for energy.

The pathway for glycolysis requires 10 enzymes. Using special "targeting domains," sperm tether these to a fibrous sheath that runs the length of the tail. In this study, the researchers are trying to re-create this glycolytic pathway by modifying each protein's targeting domain so that they can instead bind to nickel ions on a manufactured chip.

So far, they have successfully attached three of the 10 enzymes required to make ATP from glucose, and each has remained functional. If they manage to attach all 10 enzymes, each enzyme will in principle act in a series to ultimately generate ATP to power a nano-device. In the body, such a device could conceivably use readily available blood glucose as fuel.

Potential uses include delivery systems loaded with chemo drugs or antibiotics to target specific cells. Such a system would allow doctors to provide steady doses while reducing side effects that result from treating the entire body with a drug.

Travis' group is trying to get funding to complete attaching the rest of the enzymes in the glycolysis pathway. "We have a provisional patent, so if a company shows interest, we could also work something out with them," said Travis.

Since the researchers only plan to re-create the biological pathway used by sperm to create energy, it will require input from bioengineers and different physicians and veterinarians to develop viable delivery systems and other innovative uses, Travis stressed.

The study was funded by a grant from the New York State Foundation for Science, Technology and Innovation (also known as NYSTAR), through the Center for Advanced Technology at Cornell.

####

About Cornell University
The strategic plan for research at Cornell can be summed up simply: Be the best at what we undertake to do. The research enterprise supports university research priorities: the New Life Sciences; cross-college collaborations; and enabling research areas--computing and information sciences, genomics, advanced materials, and nanoscience. We build on our strengths when creating programs, recruiting faculty, purchasing equipment, and supporting interdisciplinary programs. Cornell research is committed to knowledge transfer and engages in technology transfer and economic development activities that benefit local, regional, national, and international constituents.

For more information, please click here

Contacts:
Cornell Chronicle:
Krishna Ramanujan
(607) 255-3290


Media Contact:
Press Relations Office
(607) 255-6074

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Molecular Machines

Injectable electronics: New system holds promise for basic neuroscience, treatment of neuro-degenerative diseases June 8th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Discoveries

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Announcements

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Patents/IP/Tech Transfer/Licensing

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Smarter window materials can control light and energy July 22nd, 2015

Magnetic nanoparticles could be key to effective immunotherapy: New method moves promising strategy closer to clinical use July 15th, 2015

Nanospheres shield chemo drugs, safely release high doses in response to tumor secretions July 14th, 2015

Events/Classes

Albany College of Pharmacy and Health Sciences to Host One Week Symposium on Nanomedicine July 23rd, 2015

Photonex 2015 - The annual Nano-Spectroscopy and Bio-Imaging meeting is announced July 21st, 2015

IEEE ROBIO 2015 Call for Papers: 2015 IEEE International Conference on Robotics and Biomimetics - December 6-9, 2015, Zhuhai, China July 19th, 2015

Industrial Forum organized within Graphene Canada 2015: Recent advances in technology developments and business opportunities in graphene commercialization July 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project