Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > News > Bouncing bubbles could power microturbines

November 23rd, 2007

Bouncing bubbles could power microturbines

Abstract:
Researchers have hit upon an unusual way to spin tiny propellers - set them on top of tiny bouncing bubbles. Inspired by winged seed pods, they could find use for mixing tiny amounts of liquids, or strength-testing nanostructures, researchers say.

Daniel Attinger, of Columbia University, New York, US, and colleagues hit upon the idea when investigating the way fluids move around vibrating bubbles. By heating water, the team made tiny bubbles around 40 micrometres across, the width of a few human cells, on a container's walls.

Theoretical studies have suggested that bouncing creates a vortex around bubbles, so the researchers vibrated the container with a piezoelectric "buzzer" to achieve this. They then put small pieces of plastic into the flow around them to search for signs of the vortex effect.

Source:
technology.newscientist.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Molecular Machines

Legions of nanorobots target cancerous tumors with precision: Administering anti-cancer drugs redefined August 16th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

Pushing a single-molecule switch: An international team of researchers from Donostia International Physics Center, Fritz-Haber Institute of the Max Planck Society, University of Liverpool, and the Polish Academy of Sciences has shown a new way to operate a single-molecule switch July 19th, 2016

Researchers harness DNA as the engine of super-efficient nanomachine: New platform detects traces of everything from bacteria to viruses, cocaine and metals July 10th, 2016

Discoveries

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Announcements

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic