Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Dude, big screen TVs, flexible electronics and surfboards made from same new material!

Abstract:
Producing controlled-grid patterns of nanotube arrays for strengthening polymer composites

Dude, big screen TVs, flexible electronics and surfboards made from same new material!

Australia | Posted on November 21st, 2007

There is nothing new about combining two materials to make a composite material with more desirable properties than the originals. Fibreglass has been a mainstay of the marine industry for decades and the construction industry is built on reinforced concrete. Now carbon nanotubes (CNT) are getting in on the act with nanotechnologists working out how to grow nanotube reinforcements for polymers in an ideal manner.

Researchers from Trinity College have developed a scalable inexpensive technique to grow grid patterns of nanotube arrays. To maximise the effect of CNT reinforcement on a polymer thin film, while minimizing nanotube content, a controllable way of varying the volume fraction of CNTs within the composite is needed. In order to do this, the inter-grid spacing can be tailored as required giving a simple method of controlling the volume fraction of nanotubes grown on substrates.

The research work by Werner J. Blau, Dr. Emer Lahiff, Andrew I. Minett and Dr. Kentaro Nakajima is expected to lead to incorporation of CNTs in polymer matrices within flat panel displays, sensors, flexible electronic devices and actuators.

The study has been published in a special edition of the open access journal, AZoJono. This special edition of AZoJono features a number of papers from DESYGN-IT, the project seeking to secure Europe as the international scientific leader in the design, synthesis, growth, characterisation and application of nanotubes, nanowires and nanotube arrays for industrial technology.

The article is available to view in full at http://www.azonano.com/Details.asp?ArticleID=2040

####

About AZoNetwork
*AZojono publishes high quality articles and papers on all aspects of nanomaterials and related technologies. All the contributions are reviewed by a world class panel of editors who are experts in a wide spectrum of materials science. [See http://www.azonano.com/founding_editors.asp ]

AZojono is based on the patented OARS (Open Access Rewards System) publishing protocol. The OARS protocol represents a unique development in the field of scientific publishing the distribution of online scientific journal revenue between the authors, peer reviewers and site operators with no publication charges, just totally free to access high quality, peer reviewed materials science. [See http://www.azonano.com/nanotechnology%20journal.asp and http://www.azonano.com/journal_of_nanotechnology.asp ]

Members of DESYGN-IT are Trinity College Dublin, National University of Ireland Cork, Jozef Stefan Institute, University of Ulster, Queen Mary and Westfield College, Queen University Belfast, Fraunhofer-Gesellschaft, University of Cambridge, Toughglass, Sensor Technology & Devices, Mid Sweden University, Ntera, Mo6 and University of Latvia.

For more information, please click here

Contacts:
Ian Birkby

61-029-999-0070

Copyright © AZoNetwork

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

Iranian Scientists Eliminate Expensive Materials from Diabetes Diagnosis Sensors March 25th, 2015

Effect of Carbon Nanotubes on Properties of Cement Composites Studied in Iran March 23rd, 2015

First proof of isolated attosecond pulse generation at the carbon K-edge March 20th, 2015

Discoveries

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Materials/Metamaterials

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Chemists make new silicon-based nanomaterials March 27th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Announcements

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE