Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Dude, big screen TVs, flexible electronics and surfboards made from same new material!

Abstract:
Producing controlled-grid patterns of nanotube arrays for strengthening polymer composites

Dude, big screen TVs, flexible electronics and surfboards made from same new material!

Australia | Posted on November 21st, 2007

There is nothing new about combining two materials to make a composite material with more desirable properties than the originals. Fibreglass has been a mainstay of the marine industry for decades and the construction industry is built on reinforced concrete. Now carbon nanotubes (CNT) are getting in on the act with nanotechnologists working out how to grow nanotube reinforcements for polymers in an ideal manner.

Researchers from Trinity College have developed a scalable inexpensive technique to grow grid patterns of nanotube arrays. To maximise the effect of CNT reinforcement on a polymer thin film, while minimizing nanotube content, a controllable way of varying the volume fraction of CNTs within the composite is needed. In order to do this, the inter-grid spacing can be tailored as required giving a simple method of controlling the volume fraction of nanotubes grown on substrates.

The research work by Werner J. Blau, Dr. Emer Lahiff, Andrew I. Minett and Dr. Kentaro Nakajima is expected to lead to incorporation of CNTs in polymer matrices within flat panel displays, sensors, flexible electronic devices and actuators.

The study has been published in a special edition of the open access journal, AZoJono. This special edition of AZoJono features a number of papers from DESYGN-IT, the project seeking to secure Europe as the international scientific leader in the design, synthesis, growth, characterisation and application of nanotubes, nanowires and nanotube arrays for industrial technology.

The article is available to view in full at http://www.azonano.com/Details.asp?ArticleID=2040

####

About AZoNetwork
*AZojono publishes high quality articles and papers on all aspects of nanomaterials and related technologies. All the contributions are reviewed by a world class panel of editors who are experts in a wide spectrum of materials science. [See http://www.azonano.com/founding_editors.asp ]

AZojono is based on the patented OARS (Open Access Rewards System) publishing protocol. The OARS protocol represents a unique development in the field of scientific publishing the distribution of online scientific journal revenue between the authors, peer reviewers and site operators with no publication charges, just totally free to access high quality, peer reviewed materials science. [See http://www.azonano.com/nanotechnology%20journal.asp and http://www.azonano.com/journal_of_nanotechnology.asp ]

Members of DESYGN-IT are Trinity College Dublin, National University of Ireland Cork, Jozef Stefan Institute, University of Ulster, Queen Mary and Westfield College, Queen University Belfast, Fraunhofer-Gesellschaft, University of Cambridge, Toughglass, Sensor Technology & Devices, Mid Sweden University, Ntera, Mo6 and University of Latvia.

For more information, please click here

Contacts:
Ian Birkby

61-029-999-0070

Copyright © AZoNetwork

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs/Fullerenes

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Nanotubes that build themselves April 14th, 2017

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

Discoveries

Researchers find new way to control light with electric fields May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Materials/Metamaterials

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

CCNY physicists demonstrate photonic hypercrystals for control of light-matter interaction May 5th, 2017

Announcements

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project