Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Breakthrough toward industrial-scale production of nanodevices

Researchers in Maryland report an advance toward making zinc oxide nanowires (shown) on an industrial scale. Courtesy of Babak Nikoobakht, National Institute of Standards and Technology
Researchers in Maryland report an advance toward making zinc oxide nanowires (shown) on an industrial scale. Courtesy of Babak Nikoobakht, National Institute of Standards and Technology

Abstract:
Scientists in Maryland are reporting an important advance toward the long-sought goal of industrial-scale fabrication of nanowire-based devices like ultra-sensitive sensors, light emitting diodes, and transistors for inexpensive, high-performance electronics products. The study is scheduled for the current issue of ACS' Chemistry of Materials, a bi-weekly journal.

Breakthrough toward industrial-scale production of nanodevices

Gaithersburg, MD | Posted on November 7th, 2007

In the report, Babak Nikoobakht points out that existing state-of-the-art assembly methods for nanowire-based devices require complicated, multi-step treatments, painstaking alignments steps, and other processing for nanowires , which are thousands of times smaller than the diameter of a human hair. The goal is to electrically address the coordinates of millions of nanowires on a surface in order to produce the components of electronic circuits.

The study describes a new method in which zinc oxide nanowires are grown in the exact positions where nanodevices later will be fabricated, in a way that involves a minimum number of fabrication steps and is suitable for industrial-scale applications. "This method, due to its scalability and ease of device fabrication, goes beyond the current state-of-the-art assembly of nanowire-based devices," the report states. "It is believed to be an attractive approach for mass fabrication of nanowire-based transistors and sensors and is expected to impact nanotechnology in fabrication of nonconventional nanodevices."

####

About American Chemical Society
The American Chemical Society the world's largest scientific society is a nonprofit organization chartered by the U.S. Congress and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Babak Nikoobakht, Ph.D.
National Institute of Standards and Technology
Gaithersburg, Maryland 20899
Phone: 301-975-3230
Fax: 301- 926-6689
Email:

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download pdf

Related News Press

Chip Technology

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Nanoelectronics

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

Discoveries

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Announcements

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project