Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Breakthrough toward industrial-scale production of nanodevices

Researchers in Maryland report an advance toward making zinc oxide nanowires (shown) on an industrial scale. Courtesy of Babak Nikoobakht, National Institute of Standards and Technology
Researchers in Maryland report an advance toward making zinc oxide nanowires (shown) on an industrial scale. Courtesy of Babak Nikoobakht, National Institute of Standards and Technology

Abstract:
Scientists in Maryland are reporting an important advance toward the long-sought goal of industrial-scale fabrication of nanowire-based devices like ultra-sensitive sensors, light emitting diodes, and transistors for inexpensive, high-performance electronics products. The study is scheduled for the current issue of ACS' Chemistry of Materials, a bi-weekly journal.

Breakthrough toward industrial-scale production of nanodevices

Gaithersburg, MD | Posted on November 7th, 2007

In the report, Babak Nikoobakht points out that existing state-of-the-art assembly methods for nanowire-based devices require complicated, multi-step treatments, painstaking alignments steps, and other processing for nanowires , which are thousands of times smaller than the diameter of a human hair. The goal is to electrically address the coordinates of millions of nanowires on a surface in order to produce the components of electronic circuits.

The study describes a new method in which zinc oxide nanowires are grown in the exact positions where nanodevices later will be fabricated, in a way that involves a minimum number of fabrication steps and is suitable for industrial-scale applications. "This method, due to its scalability and ease of device fabrication, goes beyond the current state-of-the-art assembly of nanowire-based devices," the report states. "It is believed to be an attractive approach for mass fabrication of nanowire-based transistors and sensors and is expected to impact nanotechnology in fabrication of nonconventional nanodevices."

####

About American Chemical Society
The American Chemical Society — the world's largest scientific society — is a nonprofit organization chartered by the U.S. Congress and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Babak Nikoobakht, Ph.D.
National Institute of Standards and Technology
Gaithersburg, Maryland 20899
Phone: 301-975-3230
Fax: 301- 926-6689
Email:

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download pdf

Related News Press

Chip Technology

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

GLOBALFOUNDRIES Demonstrates Industry-Leading 112G Technology for Next-Generation Connectivity Solutions: High bandwidth, low power SerDes IP portfolio enables ‘connected intelligence’ in data centers and networking applications November 15th, 2017

Nanometrics Announces $50 Million Share Repurchase Program November 15th, 2017

Nanoelectronics

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Leti Will Present 11 Papers and Host More-than-Moore Technologies Workshop November 14th, 2017

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project