Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > IBM Researchers Bring Printing to the Nanoscale with New Fabrication Technique

Abstract:
The Smallest Piece of Art Ever Printed Could Be Harbinger of Ultra-Tiny Nanowires, Biosensors and Optics for Future Chips

IBM Researchers Bring Printing to the Nanoscale with New Fabrication Technique

Zurich, Switzerland | Posted on September 10th, 2007

IBM (NYSE: IBM) researchers in collaboration with scientists from the ETH Zurich have demonstrated a new, efficient and precise technique to "print" at the nanoscale.

The method, which allows the scientists to place individual particles precisely where they want them, could advance the development of nanoscale biosensors, ultra-tiny lenses that can bend light inside future optical chips, and the fabrication of nanowires that might be the basis of tomorrow's computer chips.

Though still a few years from being used widely, the new technique shows promise for real world applications outside of the lab without major profound new inventions, and could lead to high-volume manufacturing techniques for nanostructures inside chips and other devices that are more efficient and cost less than today's methods.

"This method opens up new ways to precisely and efficiently position various kinds of nanoparticles on different surfaces, a prerequisite for exploiting the unique properties of such nanoparticles and for making their use economically feasible," explains Heiko Wolf, researcher in nanopatterning at IBM's Zurich Research lab.

The achievement, published in the September issue of the journal Nature Nanotechnology, offers a promising and powerful new tool for use in a wide range of fields and industries such as biomedicine, electronics and IT that seek ways to exploit the often unique properties of so-called nanoparticles, which are defined as particles smaller than 100 nanometers.

Until now, standard top-down micro-fabrication techniques produce such tiny particles by in effect carving them out of a bigger piece of material. Printing, in contrast, adds ready-made nanoparticles onto a surface in a very efficient way and allows for different types of materials such as metals, polymers, semiconductors, and oxides to be combined in one process.

For the first time, the researchers printed particles as tiny as 60 nanometers -- roughly 100 times smaller than a human red blood cell -- with single-particle resolution to create nano-patterns ranging from simple lines to complex arrangements. Translating the resolution of these particles into a traditional printing term known as "dots per inch" or dpi, a standard measure that defines how many individual spots of ink can be printed on a certain area, the nanoprinting method yields 100,000 dots per inch, whereas common offset printing today operates at 1,500 dpi.

To demonstrate the efficiency and the versatility of their method, the researchers chose to print Robert Fludd's 17th-century image of the sun, the alchemists' symbol for gold. Quite fittingly, it is printed out of roughly 20,000 gold particles, each of them 60 nanometers in diameter. The printing method precisely placed one particle per dot, thus creating the smallest piece of artwork ever printed from single pigment particles.

Nanoprinting Applications

In biomedicine this printing process could, for example, be applied to the printing of large arrays of biofunctional beads that can detect and identify certain cells or markers in the body. One example could be rapid screening for cancer cells or heart attack markers. As part of new point-of-care diagnostic devices, regular arrays of functional beads could enable a fast and automated read-out that only needs the tiniest amounts of samples.

Nanoparticles can also interact with light. With the new method, optical materials with new properties could be printed, for example, for use in optoelectronic devices. So-called "metamaterials" could be created in which the printed structures are as small as the wavelength of the light and therefore act as if they were a single lens with unusual properties.

Moreover, the method holds promise for semiconductors. In one experiment, the researchers achieved the controlled placement of catalytic seed particles for growing semiconducting nanowires. Such nanowires are promising candidates for future transistors in microchips.
Printing on the Nanoscale
"In traditional gravure printing, a doctor blade is used to fill the recessed features of a printing plate with ink, in which pigment particles are randomly dispersed," explains Tobias Kraus, of the nanopatterning team in Zurich. "In our high-resolution printing, a directed self-assembly process controls the arrangement of nanoparticles on the printing plate or template. The entire assembly is then printed onto a target surface, whereby the particle positions are precisely retained at a resolution that is three orders of magnitude higher than in conventional printing."

The printing template geometries explored include lines to produce closely-packed nanoparticle wires, which could be used in molecular electronics; regularly spaced arrays of gold particles as seeds for nanowire growth; and arbitrary arrangements, such as the printed replica of the sun. The long-range accuracy, which measures the deviation from the desired arrangement on a large area, is similar to that of microcontact printing methods. The next steps will be to refine the method to achieve even higher accuracies, as would be required for large-scale integration in microelectronics, as well as to extend the method to print even smaller particles.

####

About IBM
IBM’s Leadership in Nanotechnology
Today’s announcement builds on IBM’s leadership in nanotechnology: more than two decades after two IBM scientists won the Nobel Prize in Physics for their invention of the Scanning Tunneling Microscope (STM), which opened the door to the world of individual atoms for the first time, scientists and engineers from IBM Research continue to break new ground in nanoscience and technology.

The breakthrough also comes just two weeks after IBM unveiled two major scientific breakthroughs at the atomic scale: one a major step in understanding the ability for single atoms to maintain a specific magnetic direction, making them suitable for future data storage applications and the other a novel very robust and stable single-molecule switch that can be used as a modular building block for molecular computers.

Note to Editors: A press kit containing a video of a nano sun being printed out of gold particles is available in the IBM Press Room at
http://www.ibm.com/press/us/en/presskit/22301.wss

For more information, please click here

Contacts:
Jenny Hunter
IBM Media Relations (Americas)
510-919-5320



Nicole Herfurth
IBM Media Relations (Europe / Middle East / Africa)
41-44 724 84 45


Harriet Ip
IBM Media Relations (Asia)
65-6418-1521
65-9821-2994 (mobile)

Copyright © IBM

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Creating new materials with quantum effects for electronics January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

New pathway to valleytronics January 27th, 2015

Optical computing/ Photonic computing

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

Graphene plasmons go ballistic: Graphene combined with the insulting power of boron nitride enables light control in tiny circuits with dramatically reduced energy loss January 12th, 2015

High photosensitivity 2D-few-layered molybdenum diselenide phototransistors December 8th, 2014

Sensors

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Nanoelectronics

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Discoveries

Creating new materials with quantum effects for electronics January 29th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Announcements

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Photonics/Optics/Lasers

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

Printing/Lithography/Inkjet/Inks

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Nanoshaping method points to future manufacturing technology December 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE