Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > IBM Researchers Bring Printing to the Nanoscale with New Fabrication Technique

Abstract:
The Smallest Piece of Art Ever Printed Could Be Harbinger of Ultra-Tiny Nanowires, Biosensors and Optics for Future Chips

IBM Researchers Bring Printing to the Nanoscale with New Fabrication Technique

Zurich, Switzerland | Posted on September 10th, 2007

IBM (NYSE: IBM) researchers in collaboration with scientists from the ETH Zurich have demonstrated a new, efficient and precise technique to "print" at the nanoscale.

The method, which allows the scientists to place individual particles precisely where they want them, could advance the development of nanoscale biosensors, ultra-tiny lenses that can bend light inside future optical chips, and the fabrication of nanowires that might be the basis of tomorrow's computer chips.

Though still a few years from being used widely, the new technique shows promise for real world applications outside of the lab without major profound new inventions, and could lead to high-volume manufacturing techniques for nanostructures inside chips and other devices that are more efficient and cost less than today's methods.

"This method opens up new ways to precisely and efficiently position various kinds of nanoparticles on different surfaces, a prerequisite for exploiting the unique properties of such nanoparticles and for making their use economically feasible," explains Heiko Wolf, researcher in nanopatterning at IBM's Zurich Research lab.

The achievement, published in the September issue of the journal Nature Nanotechnology, offers a promising and powerful new tool for use in a wide range of fields and industries such as biomedicine, electronics and IT that seek ways to exploit the often unique properties of so-called nanoparticles, which are defined as particles smaller than 100 nanometers.

Until now, standard top-down micro-fabrication techniques produce such tiny particles by in effect carving them out of a bigger piece of material. Printing, in contrast, adds ready-made nanoparticles onto a surface in a very efficient way and allows for different types of materials such as metals, polymers, semiconductors, and oxides to be combined in one process.

For the first time, the researchers printed particles as tiny as 60 nanometers -- roughly 100 times smaller than a human red blood cell -- with single-particle resolution to create nano-patterns ranging from simple lines to complex arrangements. Translating the resolution of these particles into a traditional printing term known as "dots per inch" or dpi, a standard measure that defines how many individual spots of ink can be printed on a certain area, the nanoprinting method yields 100,000 dots per inch, whereas common offset printing today operates at 1,500 dpi.

To demonstrate the efficiency and the versatility of their method, the researchers chose to print Robert Fludd's 17th-century image of the sun, the alchemists' symbol for gold. Quite fittingly, it is printed out of roughly 20,000 gold particles, each of them 60 nanometers in diameter. The printing method precisely placed one particle per dot, thus creating the smallest piece of artwork ever printed from single pigment particles.

Nanoprinting Applications

In biomedicine this printing process could, for example, be applied to the printing of large arrays of biofunctional beads that can detect and identify certain cells or markers in the body. One example could be rapid screening for cancer cells or heart attack markers. As part of new point-of-care diagnostic devices, regular arrays of functional beads could enable a fast and automated read-out that only needs the tiniest amounts of samples.

Nanoparticles can also interact with light. With the new method, optical materials with new properties could be printed, for example, for use in optoelectronic devices. So-called "metamaterials" could be created in which the printed structures are as small as the wavelength of the light and therefore act as if they were a single lens with unusual properties.

Moreover, the method holds promise for semiconductors. In one experiment, the researchers achieved the controlled placement of catalytic seed particles for growing semiconducting nanowires. Such nanowires are promising candidates for future transistors in microchips.
Printing on the Nanoscale
"In traditional gravure printing, a doctor blade is used to fill the recessed features of a printing plate with ink, in which pigment particles are randomly dispersed," explains Tobias Kraus, of the nanopatterning team in Zurich. "In our high-resolution printing, a directed self-assembly process controls the arrangement of nanoparticles on the printing plate or template. The entire assembly is then printed onto a target surface, whereby the particle positions are precisely retained at a resolution that is three orders of magnitude higher than in conventional printing."

The printing template geometries explored include lines to produce closely-packed nanoparticle wires, which could be used in molecular electronics; regularly spaced arrays of gold particles as seeds for nanowire growth; and arbitrary arrangements, such as the printed replica of the sun. The long-range accuracy, which measures the deviation from the desired arrangement on a large area, is similar to that of microcontact printing methods. The next steps will be to refine the method to achieve even higher accuracies, as would be required for large-scale integration in microelectronics, as well as to extend the method to print even smaller particles.

####

About IBM
IBM’s Leadership in Nanotechnology
Today’s announcement builds on IBM’s leadership in nanotechnology: more than two decades after two IBM scientists won the Nobel Prize in Physics for their invention of the Scanning Tunneling Microscope (STM), which opened the door to the world of individual atoms for the first time, scientists and engineers from IBM Research continue to break new ground in nanoscience and technology.

The breakthrough also comes just two weeks after IBM unveiled two major scientific breakthroughs at the atomic scale: one a major step in understanding the ability for single atoms to maintain a specific magnetic direction, making them suitable for future data storage applications and the other a novel very robust and stable single-molecule switch that can be used as a modular building block for molecular computers.

Note to Editors: A press kit containing a video of a nano sun being printed out of gold particles is available in the IBM Press Room at
http://www.ibm.com/press/us/en/presskit/22301.wss

For more information, please click here

Contacts:
Jenny Hunter
IBM Media Relations (Americas)
510-919-5320



Nicole Herfurth
IBM Media Relations (Europe / Middle East / Africa)
41-44 724 84 45


Harriet Ip
IBM Media Relations (Asia)
65-6418-1521
65-9821-2994 (mobile)

Copyright © IBM

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Error-free into the quantum computer age December 15th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Optical computing/Photonic computing

Scientists make transparent materials absorb light December 1st, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Fast flowing heat in graphene heterostructures: Surprisingly fast heat flow from graphene to its surrounding November 29th, 2017

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Sensors

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Nanoelectronics

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Leti Will Present 11 Papers and Host More-than-Moore Technologies Workshop November 14th, 2017

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Discoveries

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Announcements

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Photonics/Optics/Lasers

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

Printing Flexible Graphene Supercapacitors December 1st, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project