Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > U.S.-Singapore team applying nanoelectronics to embedded computing

Abstract:
Computing researchers at Houston's Rice University and electronics specialists at Singapore's Nanyang Technological University (NTU) today announced the formation of the Institute for Sustainable Nanoelectronics (ISNE). The $2.6-million joint research initiative, valued at 4 million Singapore dollars, aims to slash the design and production costs for embedded microchips -- special-purpose computer chips that power everything from cell phones and digital cameras to jet airplanes and MRI machines.

U.S.-Singapore team applying nanoelectronics to embedded computing

HOUSTON, TX | Posted on September 4th, 2007

Rice, Nanyang Tech collaborate on sustainable nanoelectronics

U.S.-Singapore team aims to leverage Moore's Law for embedded computing

Computing researchers at Houston's Rice University and electronics specialists at Singapore's Nanyang Technological University (NTU) today announced the formation of a $2.6-million Institute for Sustainable Nanoelectronics (ISNE). The joint research initiative, valued at 4 million Singapore dollars, aims to slash the design and production costs for embedded microchips -- special-purpose computer chips that power everything from cell phones and digital cameras to jet airplanes and MRI machines.

"A major goal of the collaboration is to help sustain Moore's Law and exploit the exponential rate at which electronic components have been shrinking for more than four decades," said Rice researcher Krishna Palem, the architect of the multinational initiative.

For instance, in a streaming video application on a cell phone, it's unnecessary to conduct precise calculations. The small screen, combined with the human brain's ability to process less-than-perfect pictures, results in a case where the picture looks just as good with a calculation that's only approximately correct.

"The key is tying the costs for design, energy consumption and production to the value that the computed information has for the user," Palem said.

ISNE is funded by and based at NTU. It will draw upon an International Network of Excellence directed by Palem. The broad-based network will include computing experts from elite organizations like NTU, Rice and the Georgia Institute of Technology.

"NTU is pleased to be collaborating with Rice to spearhead research in sustainable nanoelectronics," said NTU President Su Guaning. "Leveraging the strengths of NTU and Rice, both top technological universities, will no doubt bring about exciting breakthroughs. We are also glad to have Professor Palem, renowned for his computing methodology, head the ISNE."

The institute will partner with Rice's new Value of Information-based Sustainable Embedded Nanocomputing Center, or VISEN, which Palem recently established with seed funding from Rice.

"Rice and NTU are well-positioned to lead the search for sustainable new technologies in nanoelectronics," said Rice President David Leebron. "NTU is a leader in electronics and a well-known contributor to Singapore's economic vitality. Rice is a leader in engineering and nanotechnology, with a well-deserved reputation for international collaboration and the development and application of new ideas."

The institute hopes to evolve a design methodology that will be applicable not only to today's complementary metal-oxide semiconductors, or CMOS, but also to emerging computing platforms based on photonics and nanotechnology. The platform-independent approach is one of the institute's central themes, said Palem, who recently finished a yearlong appointment at the California Institute of Technology as a Gordon Moore Distinguished Scholar.

One example of the new "value-of-information" approach is probabilistic CMOS, or PCMOS, a new technology and an accompanying computing architecture invented within the past five years by Palem's research team. The key to PCMOS is a scheme that allows chips to trade off energy consumption at the cost of increased electronic "noise," which leads to slight processing errors.

The beauty of PCMOS is that most of today's chips are over-engineered for day-to-day applications. In prior research, Palem ran cell-phone-style streaming video applications in a side-by-side comparison on PCMOS chips and traditional, power-hungry cell-phone chips. An award-winning demonstration of the technique at a 2006 conference in Seoul, South Korea, wowed audiences, who saw no appreciable difference in picture quality, even though the PCMOS chips used five times less power. Palem and colleagues at NTU are currently testing the first-generation production prototype PCMOS chips.

"As information processing systems become more ubiquitous in consumer-driven applications, their designs must be tailored to reflect the needs of the end-users, and it is in this area that the new NTU/Rice Institute for Sustainable Nanoelectronics will make substantial contributions," said Ralph Cavin, chief scientist at the non-profit Semiconductor Research Corporation in Durham, N.C. "The institute's goal of developing design technologies for extremely-scaled CMOS, so that the consumer's needs are met at reduced cost, is well-aligned with emerging directions in integrated circuit applications."

Palem, who is the Ken and Audrey Kennedy Professor in Computer Science and professor of electrical and computer engineering, joined Rice's faculty July 1 from Georgia Tech, where he founded and directed the Center for Research in Embedded Systems and Technology.

"Krishna was recruited to Rice by the legendary computer scientist Ken Kennedy," said Sallie Keller-McNulty, dean of Rice's George R. Brown School of Engineering. "Ken was passionate about optimization, about making all computers -- be they supercomputers or smart devices - more efficient and easier to use. We're proud that Krishna is continuing the tradition of international excellence that Ken fostered at Rice."

####

About Rice University
Rice University is consistently ranked one of America’s best teaching and research universities. It is distinguished by its: size—2,850 undergraduates and 1,950 graduate students; selectivity—10 applicants for each place in the freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice’s wooded campus is located in the nation’s fourth largest city and on America’s South Coast.

For more information, please click here

Contacts:
Jade Boyd
PHONE: 713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

A firefly's flash inspires new nanolaser light July 18th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GF’s 22FDX® technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Nanometrics to Announce Second Quarter Financial Results on August 1, 2017 July 14th, 2017

Nanoelectronics

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

A firefly's flash inspires new nanolaser light July 18th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GF’s 22FDX® technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

Announcements

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Alliances/Trade associations/Partnerships/Distributorships

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GF’s 22FDX® technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Advanced Nanomechanical Characterization Centre Open in India: Nanomechanics, Inc. announces the establishment of the joint technology development center in Hyderabad, India July 5th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Research partnerships

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GF’s 22FDX® technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Carbon displays quantum effects July 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project