Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Breakthrough in nanomachining and organic molecular breakdown

June 17th, 2007

Breakthrough in nanomachining and organic molecular breakdown

Abstract:
Engineering researchers at the University of Arkansas and the University of Nebraska-Lincoln have discovered a novel nanomachining process that will help manufacturers produce superior nanoscale devices to perform important functions such as detecting DNA and precisely controlling drug release.

The research, to be published in the Physical Review Letters, focuses on the dielectric breakdown of liquid organic molecules introduced during the nanomachining process. Dielectric materials do not conduct electric current.

"Understanding dielectric properties of very thin layers plays a critical role in next-generation electronic devices," said Ajay Malshe, professor of mechanical engineering at the University of Arkansas. "In the past 10 years, the machining process in conductive materials for these devices has been scaled down to the micro level - between 3 and 10 micrometers. With this project, we demonstrated dielectric breakdown for the first time at the nanolevel."

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Molecular Machines

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Dartmouth researchers create 'green' process to reduce molecular switching waste December 15th, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Molecular Nanotechnology

Dartmouth researchers create 'green' process to reduce molecular switching waste December 15th, 2014

New technique allows low-cost creation of 3-D nanostructures December 8th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

Manipulating complex molecules by hand: New method in scanning probe microscopy: Jülich researchers create a word using 47 molecules November 6th, 2014

Alliances/Partnerships/Distributorships

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

New 'electronic skin' for prosthetics, robotics detects pressure from different directions December 10th, 2014

SEMATECH Reports Significant Progress in EUV Resist Outgas Testing: Technologists from SEMATECH and JSR demonstrate outgas test results that further enable EUV lithography for high-volume manufacturing readiness December 3rd, 2014

Toward a low-cost 'artificial leaf' that produces clean hydrogen fuel December 3rd, 2014

Research partnerships

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Unraveling the light of fireflies December 17th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE