Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Breakthrough in nanomachining and organic molecular breakdown

June 17th, 2007

Breakthrough in nanomachining and organic molecular breakdown

Abstract:
Engineering researchers at the University of Arkansas and the University of Nebraska-Lincoln have discovered a novel nanomachining process that will help manufacturers produce superior nanoscale devices to perform important functions such as detecting DNA and precisely controlling drug release.

The research, to be published in the Physical Review Letters, focuses on the dielectric breakdown of liquid organic molecules introduced during the nanomachining process. Dielectric materials do not conduct electric current.

"Understanding dielectric properties of very thin layers plays a critical role in next-generation electronic devices," said Ajay Malshe, professor of mechanical engineering at the University of Arkansas. "In the past 10 years, the machining process in conductive materials for these devices has been scaled down to the micro level - between 3 and 10 micrometers. With this project, we demonstrated dielectric breakdown for the first time at the nanolevel."

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Molecular Machines

NIST illuminates transfer of nanoscale motion through microscale machine September 14th, 2016

Measuring forces in the DNA molecule: First direct measurements of base-pair bonding strength September 13th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Legions of nanorobots target cancerous tumors with precision: Administering anti-cancer drugs redefined August 16th, 2016

Molecular Nanotechnology

On-surface chemistry leads to novel products: On-surface chemical Reactions can lead to novel chemical compounds not yet synthesized by solution chemistry. September 13th, 2016

Measuring forces in the DNA molecule: First direct measurements of base-pair bonding strength September 13th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Location matters in the self-assembly of nanoclusters: Iowa State University scientists have developed a new formulation to explain an aspect of the self-assembly of nanoclusters on surfaces that has broad applications for nanotechnology September 8th, 2016

Alliances/Trade associations/Partnerships/Distributorships

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

SEMI and MSIG Join Together in Strategic Association Partnership: MEMS & Sensors Industry Group Brings New MEMS and Sensors Community to SEMI to Increase Combined Member Value September 15th, 2016

Leti and Oberthur Technologies Partner to Explore New Solutions in Fast-growing Digital Era September 12th, 2016

Synopsys Joins GLOBALFOUNDRIES’ FDXcelerator Partner Program to Enable Innovative Designs Using the FD-SOI Process: Program Gives Synopsys Access to GLOBALFOUNDRIES’ FDX Portfolio and Provides Customers with Tools that Support the Differentiated Features of FD-SOI September 8th, 2016

Research partnerships

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic