Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanocomp Technologies Manufactures First Ready-to-Use Carbon Nanotube Textile, Sets Stage for Commercial Production

Abstract:


Company's long nanotubes primed to fulfill promise of nanotube materials in industrial applications

Nanocomp Technologies Manufactures First Ready-to-Use Carbon Nanotube Textile, Sets Stage for Commercial Production

CONCORD, NH | Posted on May 14th, 2007

Nanocomp Technologies, Inc., a developer of next-generation performance materials, today announced it has successfully produced a revolutionary new textile material from long carbon nanotubes. The material, in usable nonwoven sheet and yarn formats, is extremely lightweight and strong, efficiently conducts both electricity and heat, and could be the key to realizing significant functional performance benefits in defense and aerospace applications ranging from body armor to structural composites, as well as commercial energy storage and electronics thermal management.

"We believe we are on the cusp of delivering the promise of carbon nanotube materials," said Peter Antoinette, Nanocomp president and CEO. "Like our predecessors in performance products who developed Gore-Tex® and Tyvek®, we have a product platform with vast real-world functionality and, together with the system integrators that will ultimately incorporate it into end-use products, we aim to determine just how broad the benefits can extend."

Scientists have long known of the remarkable electro-mechanical properties of carbon nanotubes. They are 100 times stronger than steel, one-third the weight of aluminum and extremely conductive of both heat and electricity. This makes them extremely attractive for broad-based use, with the potential to augment or replace many current materials in end-user products.

Antoinette also said that commercial manufacturing processes to date have mostly produced only short carbon nanotubes - usually tens of microns long - that resemble a powder in final form. These nanotubes can be quite difficult to incorporate into manufactured goods, and when done so, end products have not yet demonstrated the enormously attractive structural and conductive properties of nanotubes. The result has been very limited adoption and use of carbon nanotubes in industrial applications.

Nanocomp has overcome these limitations by producing extremely long (hundreds of microns to millimeters) and highly pure nanotubes. These long nanotubes are a key to producing the ultimate functional materials, nanotube yarns and nonwoven sheets, for in end-use applications.

Nanocomp is also developing prototype equipment to automate production of the nanotube yarns and nonwoven materials leading to commercial scale.

In the near term, Nanocomp expects its materials to be 1) used in conjunction with carbon fibers and aramids to reduce weight and improve performance of body armor; 2) incorporated into land, air and marine vehicle structures to improve fuel economy; 3) used for next-generation wiring systems and antennas; and, 4) due to their ability to take an electrical charge much faster and many more times than batteries, used to create ultra capacitors to store large amounts of energy from intermittent energy sources such as wind and solar energy, as well as to smooth out demand spikes in the power network.

####

About Nanocomp Technologies, Inc.
Nanocomp Technologies, Inc. (NCTI) was formed in 2004 to leverage its proprietary and fundamental advancements in the production of long carbon nanotubes as well as a unique ability to fabricate them into physically strong, lightweight and electro-thermally conductive yarns and nonwoven sheets. The company’s objective is to develop products with revolutionary performance benefits that would create a new generation of advanced structural materials and electro-thermal devices. It has eight patents pending.

NCTI has been proud to partner with both the United States Army Natick Soldier Center and the United States Navy Office of Naval Research to develop and scale its nanotube production technology for the benefit of those serving in our Armed Forces.

The company is headquartered in Concord, N.H. For additional information, please visit http://www.nanocomptech.com/ .

Nanocomp and the Nanocomp logo are trademarks of Nanocomp Technologies, Inc. All other marks are trademarks or registered trademarks of their respective holders.

For more information, please click here

Contacts:
Schwartz Communications, Inc.
Robert Skinner or Marc Saint Louis, 781-684-0770

Copyright © Business Wire 2007

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

University of Houston researchers create new method to draw molecules from live cells: Technique using magnetic nanomaterials offers promise for diagnosis, gene therapy July 17th, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Researchers discover boron 'buckyball' July 14th, 2014

Announcements

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Patents/IP/Tech Transfer/Licensing

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

Rice's silicon oxide memories catch manufacturers' eye: Use of porous silicon oxide reduces forming voltage, improves manufacturability July 10th, 2014

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

Military

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Future Electronics May Depend on Lasers, Not Quartz July 17th, 2014

Textiles/Clothing

Iranian Scientists Change Structure of Nanoparticles to Increase Durability of Antibacterial Activity of Fabrics July 7th, 2014

Nano-coatings release almost no nano-particles: Silver in the washing machine June 30th, 2014

Iranian Researchers Produce Protein Nanoparticles from Chicken Feather June 11th, 2014

Breakthrough in energy storage: Electrical cables that can store energy: New nanotech may provide power storage in electric cables, clothes June 2nd, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Labs characterize carbon for batteries: Rice, Lawrence Livermore scientists calculate materials’ potential for use as electrodes July 14th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Research partnerships

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE