Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Student designer and fiber scientists create a dress that prevents colds and a jacket that destroys noxious gases

Anne Ju/Cornell Chronicle
Design student Olivia Ong '07 hugs two garments, treated with metallic nanoparticles through a collaboration with fiber scientists Juan Hinestroza and Hong Dong, that she designed as part of her fashion line, "Glitterati."
Anne Ju/Cornell Chronicle Design student Olivia Ong '07 hugs two garments, treated with metallic nanoparticles through a collaboration with fiber scientists Juan Hinestroza and Hong Dong, that she designed as part of her fashion line, "Glitterati."

Abstract:
Fashion designers and fiber scientists at Cornell have taken "functional clothing" to a whole new level. They have designed a garment that can prevent colds and flu and never needs washing, and another that destroys harmful gases and protects the wearer from smog and air pollution.

Student designer and fiber scientists create a dress that prevents colds and a jacket that destroys noxious gases

ITHACA, NY | Posted on May 1st, 2007

The two-toned gold dress and metallic denim jacket, featured at the April 21 Cornell Design League fashion show, contain cotton fabrics coated with nanoparticles that give them functional qualities never before seen in the fashion world.

Designed by Olivia Ong '07 in the College of Human Ecology's Department of Fiber Science and Apparel Design, the garments were infused with their unusual qualities by fiber science assistant professor Juan Hinestroza and his postdoctoral researcher Hong Dong. Apparel design assistant professor Van Dyke Lewis launched the collaboration by introducing Ong to Hinestroza several months ago.

"We think this is one of the first times that nanotechnology has entered the fashion world," Hinestroza said. He noted one drawback may be the garments' price: one square yard of nano-treated cotton would cost about $10,000.

Ong's dress and jacket, part of her original fashion line called "Glitterati," look innocently hip. But closer inspection -- with a microscope, that is -- shows an army of electrostatically charged nanoparticles creating a protective shield around the cotton fibers in the top part of the dress, and the sleeves, hood and pockets of the jacket.

"It's something really moving toward the future, and really advanced," said Ong, who graduates in December and aspires to design school. "I thought this could potentially be what fashion is moving toward."

Dong explained that the fabrics were created by dipping them in solutions containing nanoparticles synthesized in Hinestroza's lab. The resultant colors are not the product of dyes, but rather, reflections of manipulation of particle size or arrangement.

The upper portion of the dress contains cotton coated with silver nanoparticles. Dong first created positively charged cotton fibers using ammonium- and epoxy-based reactions, inducing positive ionization. The silver particles, about 10-20 nanometers across (a nanometer is one-billionth of a meter) were synthesized in citric acid, which prevented nanoparticle agglomeration.

Dipping the positively charged cotton into the negatively charged silver nanoparticle solution resulted in the particles clinging to the cotton fibers.

Silver possesses natural antibacterial qualities that are strengthened at the nanoscale, thus giving Ong's dress the ability to deactivate many harmful bacteria and viruses. The silver infusion also reduces the need to wash the garment, since it destroys bacteria, and the small size of the particles prevents soiling and stains.

The denim jacket included a hood, sleeves and pockets with soft, gray tweed cotton embedded with palladium nanoparticles, about 5-10 nanometers in length. To create the material, Dong placed negatively charged palladium crystals onto positively charged cotton fibers.

Ong, though strictly a designer, was drawn especially to the science behind creating the anti-smog jacket.

"I thought it would be cool if [wearers] could wipe their hands on their sleeves or pockets," Ong said.

Ong incorporated the resultant cotton fiber into a jacket with the ability to oxidize smog. Such properties would be useful for someone with allergies, or for protecting themselves from harmful gases in the contaminated air, such as in a crowded or polluted city.

####

About Cornell University
The strategic plan for research at Cornell can be summed up simply: Be the best at what we undertake to do. The research enterprise supports university research priorities: the New Life Sciences; cross-college collaborations; and enabling research areas--computing and information sciences, genomics, advanced materials, and nanoscience. We build on our strengths when creating programs, recruiting faculty, purchasing equipment, and supporting interdisciplinary programs. Cornell research is committed to knowledge transfer and engages in technology transfer and economic development activities that benefit local, regional, national, and international constituents.

For more information, please click here

Contacts:
Cornell Chronicle:
Anne Ju
(607) 255-9735

Media Contact:
Press Relations Office
(607) 255-6074

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Products

NEI Corporation introduces UV-Protect Technology to NANOMYTE® Coating Line April 9th, 2018

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

STMicroelectronics’ Semiconductor Chips Contribute to Connected Toothbrush from Oral-B That Sees What You Don’t: Microcontroller and Accelerometer help brushers clean their teeth more effectively October 4th, 2016

Announcements

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

Textiles/Clothing

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Carbodeon demonstrates NanoDiamond nickel coatings with enhanced tribological properties June 7th, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

Human Interest/Art

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

Call for NanoArt and Art-Science-Technology Papers June 9th, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project