Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Viral Manufacturing: Building Nanomachines With Viruses

February 17th, 2007

Viral Manufacturing: Building Nanomachines With Viruses

Abstract:
The goal of nanofabrication is to make tiny machines build themselves using molecules they grab from their surroundings. It's easy to dismiss the concept as science fiction or hype. Until you hear what's been going on in the lab of MIT materials scientist Angela Belcher, a star in nanotechnology circles.

Working with colleagues Paula Hammond and Yet-Ming Chiang, Belcher genetically altered a virus, the M-13 bacteriophage, inducing it to grab a pair of conductive metals cobalt oxide and gold from a solution. As the viruses rearrange themselves, they form highly aligned organic nanowires that can be used as a lithium-ion battery electrode one so densely packed it can store two or three times the energy of conventional electrodes of the same size and weight. So far, the team has grown an anode. The next steps-which could be completed in two years-will be to grow a cathode, and to perfect the Saran Wrap-thin polymer electrolyte that separates the electrodes.

Source:
popularmechanics.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

NEMS

Iranian Scientists Evaluate Dynamic Interaction between 2 Carbon Nanotubes April 14th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Molecular Machines

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

New remote control for molecular motors: It is now theoretically possible to remotely control the direction in which magnetic molecules spin, which opens the door to designing applications based on molecular motors March 16th, 2015

Monitoring the real-time deformation of carbon nanocoils under axial loading February 18th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

Beyond the lithium ion -- a significant step toward a better performing battery April 18th, 2015

Harvesting energy from electromagnetic waves: In the future, clean alternatives such as harvesting energy from electromagnetic waves may help ease the world's energy shortage April 15th, 2015

A KAIST research team develops a hyper-stretchable elastic-composite energy harvester April 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE