Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Molecular Switches

Optoelectronic components based on a dye-sensitized TiO2 solar cell

Molecular Switches

Posted on April 24, 2006

Electronic components must continue to get smaller: Miniaturization has now reached the nanometer scale (10-9 m). In this tiny world, classic semiconductor technology is reaching its limits. We now need switches and other devices whose dimensions are on the scale of individual molecules. The difficulty with this is in the addressability and compatibility of molecular systems with the available nanoelectronic components. Until now, all molecular systems require at least one step in which a solution must be injected into the system and then rinsed out again, which is time-consuming.

L. Furtado, K. Araki, H. E. Toma, and co-workers at the University of São Paulo in Brazil describe for the first time an optoelectronic molecular gate that directly absorbs light and gives off electrical impulses.

The gate consists of a glass electrode onto which a thin, nanocrystalline film of TiO2 is deposited. A dye, in this case a cluster of three ruthenium–pyrazinecarboxylate complexes, is adsorbed to this surface. A platinum counter electrode is used, and the space between the electrodes is filled by an electrolyte solution of I 3-/I2 in CH3CN.

When this gate is irradiated with light, electrons are excited, which leads to charge separation and a flow of current. The direction of the current changes depending on the wavelength of the light irradiating the system: at 350 nm, the electrons flow from the Pt electrode to the glass electrode; at 420 nm, they flow the other way.

At 350 nm, the TiO2 layer absorbs the light and gives off electrons to the underlying glass electrode. To compensate, the corresponding number of electrons is removed from the ruthenium cluster, which replaces them with electrons from the Pt electrode. At 420 nm, however, the ruthenium complexes are induced to give off electrons to the Pt electrode, which are re-supplied from the TiO2 layer.

The result is a switch that is not only turned on and off by light, but whose signal can change direction on the basis of the wavelength of light used.


Author: Koiti Araki, Universidade de São Paulo (Brazil),

Title: TiO2-Based Light-Driven XOR/INH Logic Gates

Angewandte Chemie International Edition, 2006, 45, No. 19, 3143–3146, doi: 10.1002/anie.200600076

Editorial office:

or David Greenberg (US)

or Julia Lampam (UK)

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press


How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Scientists find technique to improve carbon superlattices for quantum electronic devices: In a paradigm shift from conventional electronic devices, exploiting the quantum properties of superlattices holds the promise of developing new technologies October 20th, 2016

Metamaterial uses light to control its motion October 10th, 2016

Core technology springs from nanoscale rods: Rice University lab turns nanorods into multistate switches with an electron beam October 10th, 2016


The molecular mechanism that blocks membrane receptors has been identified: The work in which the Ikerbasque researcher of the Biofisika Institute Xabier Contreras has participated has been published in the journal Cell October 27th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Chad Mirkin receives nanotechnology prize in Russia October 26th, 2016

Imaging where cancer drugs go in the body could improve treatment October 26th, 2016

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project