Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Molecular Switches

Abstract:
Optoelectronic components based on a dye-sensitized TiO2 solar cell

Molecular Switches

Posted on April 24, 2006

Electronic components must continue to get smaller: Miniaturization has now reached the nanometer scale (10-9 m). In this tiny world, classic semiconductor technology is reaching its limits. We now need switches and other devices whose dimensions are on the scale of individual molecules. The difficulty with this is in the addressability and compatibility of molecular systems with the available nanoelectronic components. Until now, all molecular systems require at least one step in which a solution must be injected into the system and then rinsed out again, which is time-consuming.

L. Furtado, K. Araki, H. E. Toma, and co-workers at the University of São Paulo in Brazil describe for the first time an optoelectronic molecular gate that directly absorbs light and gives off electrical impulses.

The gate consists of a glass electrode onto which a thin, nanocrystalline film of TiO2 is deposited. A dye, in this case a cluster of three ruthenium–pyrazinecarboxylate complexes, is adsorbed to this surface. A platinum counter electrode is used, and the space between the electrodes is filled by an electrolyte solution of I 3-/I2 in CH3CN.

When this gate is irradiated with light, electrons are excited, which leads to charge separation and a flow of current. The direction of the current changes depending on the wavelength of the light irradiating the system: at 350 nm, the electrons flow from the Pt electrode to the glass electrode; at 420 nm, they flow the other way.

At 350 nm, the TiO2 layer absorbs the light and gives off electrons to the underlying glass electrode. To compensate, the corresponding number of electrons is removed from the ruthenium cluster, which replaces them with electrons from the Pt electrode. At 420 nm, however, the ruthenium complexes are induced to give off electrons to the Pt electrode, which are re-supplied from the TiO2 layer.

The result is a switch that is not only turned on and off by light, but whose signal can change direction on the basis of the wavelength of light used.

####


Author: Koiti Araki, Universidade de São Paulo (Brazil), www2.iq.usp.br/docente/?id=koiaraki

Title: TiO2-Based Light-Driven XOR/INH Logic Gates

Angewandte Chemie International Edition, 2006, 45, No. 19, 3143–3146, doi: 10.1002/anie.200600076

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanoelectronics

Grenoble Hosting SEMICON Europa Oct. 7-9, First Time Event Held in France: Leti’s 90-square-meter Booth Will Feature Portable Showroom To Demonstrate New Technology Innovations September 24th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Announcements

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE