Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Molecular Switches

Abstract:
Optoelectronic components based on a dye-sensitized TiO2 solar cell

Molecular Switches

Posted on April 24, 2006

Electronic components must continue to get smaller: Miniaturization has now reached the nanometer scale (10-9 m). In this tiny world, classic semiconductor technology is reaching its limits. We now need switches and other devices whose dimensions are on the scale of individual molecules. The difficulty with this is in the addressability and compatibility of molecular systems with the available nanoelectronic components. Until now, all molecular systems require at least one step in which a solution must be injected into the system and then rinsed out again, which is time-consuming.

L. Furtado, K. Araki, H. E. Toma, and co-workers at the University of São Paulo in Brazil describe for the first time an optoelectronic molecular gate that directly absorbs light and gives off electrical impulses.

The gate consists of a glass electrode onto which a thin, nanocrystalline film of TiO2 is deposited. A dye, in this case a cluster of three ruthenium–pyrazinecarboxylate complexes, is adsorbed to this surface. A platinum counter electrode is used, and the space between the electrodes is filled by an electrolyte solution of I 3-/I2 in CH3CN.

When this gate is irradiated with light, electrons are excited, which leads to charge separation and a flow of current. The direction of the current changes depending on the wavelength of the light irradiating the system: at 350 nm, the electrons flow from the Pt electrode to the glass electrode; at 420 nm, they flow the other way.

At 350 nm, the TiO2 layer absorbs the light and gives off electrons to the underlying glass electrode. To compensate, the corresponding number of electrons is removed from the ruthenium cluster, which replaces them with electrons from the Pt electrode. At 420 nm, however, the ruthenium complexes are induced to give off electrons to the Pt electrode, which are re-supplied from the TiO2 layer.

The result is a switch that is not only turned on and off by light, but whose signal can change direction on the basis of the wavelength of light used.

####


Author: Koiti Araki, Universidade de São Paulo (Brazil), www2.iq.usp.br/docente/?id=koiaraki

Title: TiO2-Based Light-Driven XOR/INH Logic Gates

Angewandte Chemie International Edition, 2006, 45, No. 19, 3143–3146, doi: 10.1002/anie.200600076

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanoelectronics

GLOBALFOUNDRIES Demonstrates 2.5D High-Bandwidth Memory Solution for Data Center, Networking, and Cloud Applications: Solution leverages 2.5D packaging with low-latency, high-bandwidth memory PHY built on FX-14™ ASIC design system August 9th, 2017

GLOBALFOUNDRIES, Silicon Mobility Deliver the Industry’s First Automotive FPCU to Boost Performance for Hybrid and Electric Vehicles: Silicon Mobility and GF’s 55nm LPx -enabled platform, with SST’s highly-reliable SuperFlash® memory technology, boosts automotive performance, ene August 3rd, 2017

Scientists discover new magnet with nearly massless charge carriers July 29th, 2017

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Announcements

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project