Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Molecular motor based on redox reactions

January 30th, 2006

Molecular motor based on redox reactions

Abstract:
A single molecule working as the nano scale version of the steam engine: that’s the molecular motor developed by a group of UT scientists led by prof. Julius Vancso of the MESA+ Institute for Nanotechnology. Natural ‘motor molecules’, capable of converting chemical energy into movement, have been the source of inspiration for this new synthetic version: a polymer molecule that stretches and shrinks caused by redox reactions. The results appear on the cover of Rapid Macromolecular Rapid Communications of January 23 .

Source:
Universiteit Twente

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Molecular Machines

'Spermbots' could help women trying to conceive (video) January 15th, 2016

Scientists blueprint tiny cellular 'nanomachine' December 17th, 2015

Nano-walkers take speedy leap forward with first rolling DNA-based motor: Fastest DNA motor holds potential for disease diagnostics December 1st, 2015

Rice makes light-driven nanosubmarines: Speedy single-molecule submersibles are a first November 16th, 2015

Announcements

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic