Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Bucky MESH score big for biomedical applications

Abstract:
The biocompatibility of Carbon nanotube MESH has been demonstrated, and is ready to be engineered into therapeutic delivery systems.

Bucky MESH cover a host of ills for biomedical applications

San Jose, CA | Posted on January 26, 2006

By Nick Massetti

The biocompatibility of Carbon nanotube MESH has been demonstrated, and is ready to be engineered into therapeutic delivery systems. Such marvels promise to impact those stubborn medical conditions like the $150 Billion/year problem of Diabetes. This revelation was among the latest results in the area of biomedical applications of nanotechnology that were presented by Doctor David Loftus at the January monthly seminar of the IEEE San Francisco Bay Area Nanotechnology Council.

Dr. Loftus is a practicing Hematology Oncologist on the adjunct clinical faculty of the Stanford University School of Medicine. In addition, at NASA AMES Research Center he is affiliated with both the Center for Nanotechnology and the Live Sciences Division where he serves as the Medical Director of Hematology Oncology Projects. He is uniquely positioned to see the pieces of the promise coming together for the near term biomedical applications of nanotechnology.

He described how specially engineered CNT mesh, dubbed "Bucky Paper," was introduced into one of the body's most reactive environments without negative consequences. Construction of millimeter sized vehicles from rolls of this nano-engineered bucky paper are underway in order to house biochemicals or live cells that would otherwise be rejected by the body's defenses. Insulin delivery pumps, nerve growth guides, and chemotherapy torpedoes are examples of macro-sized vehicles with macro-sized payloads that bucky paper enables. The porous nature of the mesh allows nutrients to penetrate while shielding its cargo from the likes of antibodies, or a tumor's defenses. Equally possible are biosensors designed to detect specific protein sequences and facilitate rapid diagnosis. Biocompatible Bucky Paper then enables our well known nano-sized Carbon tubes to be conveniently transformed into a macro sized, and therefore useful, medical application tool.

Today, MDs are particularly frustrated over the lengthy diagnostic methodology which starts with a tissue biopsy and then adds lab microscopic analysis toward a later completed diagnosis. Subsequent treatments may include chemotherapy delivered indiscriminately to the entire circulatory system. But diseases like coronary artery disease, diabetes, and many cancers largely affect the body locally and have well defined biochemistries. Locally delivered nanotechnology engineered substances hold the promise of providing in-situ detection and diagnosis which then would be followed by localized treatment.

Pressed to guess at what and when these results will surface, Dr. Loftus volunteered that the "dumbest applications will be first." For example, the mechanical aspects of bucky paper could enable surface applications like wound healing to be realized within five to seven years. Therapeutic delivery may be up to ten years away. By his count there are at least 30 US companies now developing nanotechnology engineered encapsulation schemes. Given that innovation breeds innovation, biocompatible bucky paper may provide the boost needed to shorten the time tables toward the solution of many of today's medical challenges.

####
Contact:
Nick Massetti
nick@NMassettiConsulting.com

Copyright © Nick Massetti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Scientists create antilaser for ultracold atoms condensate August 16th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanotube 'rebar' makes graphene twice as tough: Rice University scientists test material that shows promise for flexible electronics August 3rd, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Nanomedicine

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again: Simple chemical technique transforms crystal mixture where 2 liquids meet August 9th, 2018

Nanoscience and the future of healthcare kick off first day of ACS national meeting in Boston: Presidential events highlight safety, diversity and groundbreaking research August 2nd, 2018

Materials/Metamaterials

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Yale-NUS scientist and collaborators solve open theoretical problem on electron interactions August 10th, 2018

Announcements

Scientists create antilaser for ultracold atoms condensate August 16th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project