Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Bucky MESH score big for biomedical applications

Abstract:
The biocompatibility of Carbon nanotube MESH has been demonstrated, and is ready to be engineered into therapeutic delivery systems.

Bucky MESH cover a host of ills for biomedical applications

San Jose, CA | Posted on January 26, 2006

By Nick Massetti

The biocompatibility of Carbon nanotube MESH has been demonstrated, and is ready to be engineered into therapeutic delivery systems. Such marvels promise to impact those stubborn medical conditions like the $150 Billion/year problem of Diabetes. This revelation was among the latest results in the area of biomedical applications of nanotechnology that were presented by Doctor David Loftus at the January monthly seminar of the IEEE San Francisco Bay Area Nanotechnology Council.

Dr. Loftus is a practicing Hematology Oncologist on the adjunct clinical faculty of the Stanford University School of Medicine. In addition, at NASA AMES Research Center he is affiliated with both the Center for Nanotechnology and the Live Sciences Division where he serves as the Medical Director of Hematology Oncology Projects. He is uniquely positioned to see the pieces of the promise coming together for the near term biomedical applications of nanotechnology.

He described how specially engineered CNT mesh, dubbed "Bucky Paper," was introduced into one of the body's most reactive environments without negative consequences. Construction of millimeter sized vehicles from rolls of this nano-engineered bucky paper are underway in order to house biochemicals or live cells that would otherwise be rejected by the body's defenses. Insulin delivery pumps, nerve growth guides, and chemotherapy torpedoes are examples of macro-sized vehicles with macro-sized payloads that bucky paper enables. The porous nature of the mesh allows nutrients to penetrate while shielding its cargo from the likes of antibodies, or a tumor's defenses. Equally possible are biosensors designed to detect specific protein sequences and facilitate rapid diagnosis. Biocompatible Bucky Paper then enables our well known nano-sized Carbon tubes to be conveniently transformed into a macro sized, and therefore useful, medical application tool.

Today, MDs are particularly frustrated over the lengthy diagnostic methodology which starts with a tissue biopsy and then adds lab microscopic analysis toward a later completed diagnosis. Subsequent treatments may include chemotherapy delivered indiscriminately to the entire circulatory system. But diseases like coronary artery disease, diabetes, and many cancers largely affect the body locally and have well defined biochemistries. Locally delivered nanotechnology engineered substances hold the promise of providing in-situ detection and diagnosis which then would be followed by localized treatment.

Pressed to guess at what and when these results will surface, Dr. Loftus volunteered that the "dumbest applications will be first." For example, the mechanical aspects of bucky paper could enable surface applications like wound healing to be realized within five to seven years. Therapeutic delivery may be up to ten years away. By his count there are at least 30 US companies now developing nanotechnology engineered encapsulation schemes. Given that innovation breeds innovation, biocompatible bucky paper may provide the boost needed to shorten the time tables toward the solution of many of today's medical challenges.

####
Contact:
Nick Massetti
nick@NMassettiConsulting.com

Copyright Nick Massetti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Nanomedicine

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Materials/Metamaterials

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Carbon displays quantum effects July 13th, 2017

Meniscus-assisted technique produces high efficiency perovskite PV films July 7th, 2017

ANU invention may help to protect astronauts from radiation in space July 3rd, 2017

Announcements

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project