Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nano Motor Powered by Solar Energy

Abstract:
Possible areas for applications: nanoelectronics, molecular computers, and nano valves for the delivery of anti-cancer drugs and other medications

Chemists Design and Create Nano Motor Powered by Solar Energy

Posted on January 24, 2006

Chemists at Italy's University of Bologna, UCLA and the California NanoSystems Institute (CNSI) have designed and constructed a molecular motor of nanometer size that does not consume fuels; their nano motor is powered only by sunlight. The research, federally funded by the National Science Foundation, will be published Jan. 31 in Proceedings of the National Academy of Sciences (PNAS).

The nano motor can work continuously without any external interference, and operates without consuming or generating chemical fuels or waste, said Fraser Stoddart, UCLA's Fred Kavli Professor of NanoSystems Sciences and CNSI Director.

UCLA - Fraser Stoddart nanomotor
The absorption of sunlight by one of the two stoppers, a light-harvesting one, causes the transfer of one electron to station A, which is deactivated as far as wanting the ring to encircle it. As a consequence, the ring moves to its second port of call, station B. Station A is subsequently reactivated by the return of the transferred electron to the light-harvesting stopper, and the ring moves back to this station. Copyright © UCLA

Click on image for larger version.

“We design and make sunlight-powered nano motors and then ‘test drive’ them much as an engineer would a new motor car,” Stoddart said. “It is as if we had managed to get a solar powered motor car onto the road and running.”

Precisely how light-powered nano motors will be used in the future is not yet clear, Stoddart said, but he listed a number of possible areas for applications: nanoelectronics, molecular computers, and nano valves that perhaps could be used for the delivery of anti-cancer drugs and other medications.

“The achievement reported in PNAS is the culmination of a research effort lasting a quarter of a century and involving hundreds of students and millions of dollars,” Stoddart said.

What is the nano motor's composition, and how does it work?

The nano motor is a multi-component molecular-scale system called a rotaxane, a mechanically interlocked molecule consisting of one or more rings trapped on a rod by bulky stoppers at either end, in a manner reminiscent of an abacus. The system is built up from two separate molecular components: a dumbbell-shaped one, which is more than six nanometers long, and a ring component of a diameter of approximately 1.3 nanometers. The ring component is trapped on the rod portion of the dumbbell by two very bulky stoppers attached to the ends of the rod so that, although the ring can move along the rod, it cannot go over the stoppers at the ends. The rod portion of the dumbbell contains two “stations” that can be called A and B.

“It is the attractiveness between the ring and stations A and B that assists us in making the molecules in the first place,” Stoddart said. “The attractiveness for these two stations (A and B) lives on in the two-state or bistable rotaxane after it has been made. The final requirement in the design of the nano motor is that the ring prefers, in the starting state of the molecule, to surround one of the two stations, let us say A. In order to induce the ring to move from A to B we have to make A temporarily a less desirable station such that the ring will spontaneously migrate to station B.

“The linear nano motor works as follows. The absorption of sunlight by one of the two stoppers, a light-harvesting one, causes the transfer of one electron to station A, which is deactivated as far as wanting the ring to encircle it. As a consequence, the ring moves to its second port of call, station B. Station A is subsequently reactivated by the return of the transferred electron to the light-harvesting stopper, and the ring moves back to this station.

“The system operates according to a four-stroke cycle which is reminiscent of an internal combination engine in a motor car: (1) light excitation and subsequent transfers of an electron (“combustion”), (2) displacement of the ring along the rod from A to B (“piston displacement”), (3) removal of the electron received by station A (“exhaust removal”), and (4) relocation of the piston. The motions executed by the nano motor are quite rapid: a full cycle is carried out in less than one thousandth of a second, which means that the motor can operate at a frequency of 1000 Hertz – a speed that is equivalent, using the car engine analogy, to 60,000 RPM.”

Where does the research go from here?

“The research will have to go in the direction of taking the nano motors and putting them on surfaces and into membranes,” Stoddart said. “The science and engineering to achieve these objectives is daunting and tough, but the rewards are correspondingly great and satisfying. The kind of nanotechnology that will emerge from these nano motors still requires a lot of fundamental work. The nano motors are extremely sophisticated in their design.”

The nano motor was designed, assembled, and run by the research groups at UCLA and the University of Bologna working closely together.

The international research team included Vincenzo Balzani, Alberto Credi and Margherita Venturi from the University of Bologna's Photochemistry and Supramolecular Chemistry Group.

The research was also funded by Italy's Ministry of Education, University and Research, and by the European Union.

####
Media Contact:
Stuart Wolpert
UCLA
(310) 206-0511

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Molecular Machines

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Micro-bubbles make big impact: Research team develops new ultrasound-powered actuator to develop micro robot November 25th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

HKU chemists develop world's first light-seeking synthetic Nanorobot November 9th, 2016

Announcements

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project