Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Engineers create super compressible foam-like films

Abstract:
Multifunctional nanocomposites would be useful for solid lubricating coatings in air and space applications

Engineers create super compressible foam-like films

Posted on November 25, 2005

At the heart of the promises of nanotechnology – the emerging science of making molecular machines – are carbon nanotubes. These are tiny cylinders with remarkable properties that could improve products ranging from house paint to microchips.

Now, engineers at the University of Florida and two other universities have added another possibility: Foams used in everything from construction to cushions to packaging.

An article about the engineers’ discovery appears Friday in the journal Science.

First created in 1991, carbon nanotubes are among new forms of carbon called fullerenes because their sides mimic the geodesic domes designed by famed mathematician Buckminster Fuller. Nanotubes are infinitesimal cylinders with single or multiple walls that can be only a few nanometers wide. One nanometer equals one-billionth of a meter.

Carbon nanotubes are very strong. Mixed with conventional materials, they are already improving the performance of concrete and other products. They also have electrical and magnetic characteristics expected to make them useful in microchips and other electronics.

Engineers at the University of Florida, University of Hawaii and Rensselaer Polytechnic University appear to have opened the door to another use. Using a high-temperature furnace, the engineers grew foam-like nanotube films that proved to be super compressible.

Testing showed the films can be squeezed to 15 percent of their regular size, forming regular folded structures throughout the films.

Greg Sawyer, a UF associate professor of mechanical and aerospace engineering, said researchers “hope to infiltrate the films with solid materials to create new ‘nanocomposites.’” These multifunctional nanocomposites would be useful for solid lubricating coatings in air and space applications, he said.

This research was partially funded through a $2.5 million grant from the Air Force Office of Sponsored Research through UF-led Multidisciplinary University Research Initiative.

####
Contacts:
Source
Greg Sawyer
wgsawyer@ufl.edu
(352) 392-8488

Writer
Aaron Hoover
ahoover@ufl.edu
(352) 392-0186

Copyright © University of Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Nanotubes/Buckyballs/Fullerenes

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Self-healable battery Lithium ion battery for electronic textiles grows back together after breaking October 20th, 2016

Scientists find technique to improve carbon superlattices for quantum electronic devices: In a paradigm shift from conventional electronic devices, exploiting the quantum properties of superlattices holds the promise of developing new technologies October 20th, 2016

Materials/Metamaterials

Inside tiny tubes, water turns solid when it should be boiling: MIT researchers discover astonishing behavior of water confined in carbon nanotubes November 30th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Uncovering the secrets of friction on graphene: Sliding on flexible graphene surfaces has been uncharted territory until now November 23rd, 2016

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

Announcements

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project