Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Molecular Motors Cooperate In Moving Cellular Cargo

Abstract:
Tiny movements of molecular motors seen

Molecular Motors Cooperate In Moving Cellular Cargo, Study Shows

Champaign, Ill | April 07, 2005

Researchers using an extremely fast and accurate imaging technique have shed light on the tiny movements of molecular motors that shuttle material within living cells. The motors cooperate in a delicate choreography of steps, rather than engaging in the brute-force tug of war many scientists had imagined.

"We discovered that two molecular motors - dynein and kinesin - do not compete for control, even though they want to move the same cargo in opposite directions," said Paul Selvin, a professor of physics at the University of Illinois at Urbana-Champaign and corresponding author of a paper to appear in the journal Science, as part of the Science Express Web site, on April 7. "We also found that multiple motors can work in concert, producing more than 10 times the speed of individual motors measured outside the cell."

Dynein and kinesin are biomolecular motors that haul cargo from one part of a cell to another. Dynein moves material from the cell membrane to the nucleus; kinesin moves material from the cell nucleus to the cell membrane. The little cargo transporters accomplish their task by stepping along filaments called microtubules.

To measure such minuscule motion, Selvin and colleagues at Illinois developed a technique called Fluorescence Imaging with One Nanometer Accuracy (FIONA). The technique can locate a fluorescent dye to within 1.5 nanometers (one nanometer is a billionth of a meter, or about 10,000 times smaller than the width of a human hair). Recent improvements to FIONA now allow scientists to detect motion with millisecond time resolution.

Selvin's team used FIONA to track fluorescently labeled peroxisomes (organelles that break down toxic substances) inside specially cultured fruit fly cells. This was the first time the imaging technique had been used inside a living cell.

"Our measurements show that both dynein and kinesin carry the peroxisomes in a step-by-step fashion, moving about 8 nanometers per step," said Selvin, who also is a researcher at the Frederick Seitz Materials Research Laboratory on the Illinois campus.

"Because we see a fairly constant step size, we don't believe a tug of war is occurring," Selvin said. "If the dynein was fighting the kinesin, we would expect to see a lot of smaller steps as well."

The researchers also noted that faster movements occurred with the same step size, but with greater rapidity. When measured outside the cell, kinesin moved about 0.5 microns per second. Inside the cell, the speed increased to 12 microns per second.

"There must be a mechanism that allows the peroxisomes to move by multiple motors much faster than independent, uncoupled kinesins and dyneins," Selvin said. "It appears that motors are somehow regulated, being turned on or off in a fashion that prevents them from simultaneously dragging the peroxisome."

In the future, Selvin wants to combine FIONA and an optical trap technique to monitor the speed and direction of a peroxisome, and the force acting upon it.

"By measuring force we can determine how many molecular motors are working together," Selvin said. "This will help us further understand these marvelous little machines."

Collaborators on the study included Illinois graduate students Comert Kural and Hwajin Kim (lead authors), Illinois professor of cell and structural biology Vladimir Gelfand (now at the Northwestern University School of Medicine) and postdoctoral research associates Sheyum Syed at Illinois and Gohta Goshima at the University of California at San Francisco.

The work was funded by the National Institutes of Health, the National Science Foundation, and the U.S. Department of Energy.

####


Contact:
James E. Kloeppel
Physical Sciences Editor 217-244-1073
kloeppel@uiuc.edu

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Molecular Machines

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image December 22nd, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Dartmouth researchers create 'green' process to reduce molecular switching waste December 15th, 2014

Announcements

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE