Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Nanomechanical memory cell could catapult efforts to improve data storage

September 30th, 2004

Nanomechanical memory cell could catapult efforts to improve data storage

Abstract:
Researchers at the University of Illinois at Urbana-Champaign have developed a technique that uses surface chemistry to make tinier and more effective p-n junctions in silicon-based semiconductors. The method could permit the semiconductor industry to significantly extend the life of current ion-implantation technology for making transistors, thereby avoiding the implementation of difficult and costly alternatives.

Story:

New surface chemistry may extend life of technology for making transistors

Nanomechanical memory cell could catapult efforts to improve data storage

Researchers at the University of Illinois at Urbana-Champaign have developed a technique that uses surface chemistry to make tinier and more effective p-n junctions in silicon-based semiconductors. The method could permit the semiconductor industry to significantly extend the life of current ion-implantation technology for making transistors, thereby avoiding the implementation of difficult and costly alternatives.

To make faster silicon-based transistors, scientists much shrink the active region in p-n junctions while increasing the concentration of electrically active dopant. Currently about 25 nanometers thick, these active regions must decrease to about 10 nanometers, or roughly 40 atoms deep, for next-generation devices.

The conventional process, ion implantation, shoots dopant atoms into a silicon wafer in much the same way that a shotgun sends pellets into a target. To be useful, dopant atoms must lie close to the surface and replace silicon atoms in the crystal structure. In the atomic-scale chaos that accompanies implantation, however, many dopant atoms and silicon atoms end up as interstitials – lodged awkwardly between atoms in the crystal.

Ion implantation also creates defects that damage the crystal in a way that degrades its electrical properties. Heating the wafer – a process called annealing – heals some of the defects and allows more dopant atoms to move into useful crystalline sites. But annealing also has the nasty effect of further diffusing the dopant and deepening the p-n junction.

“We developed a way of using surface chemistry to obtain shallower active regions and enhanced dopant activation simultaneously,” said Edmund Seebauer, a professor of chemical and biomolecular engineering at Illinois. “By modifying the ability of the silicon surface to absorb atoms from the substrate, our technique can control and correct the defects induced during implantation.”

Inside the active region, atoms sitting on lattice sites have bonds to four neighbors, which saturates the bonding capacity of the silicon atoms. Atoms sitting on the surface have fewer neighbors, leading to unused, or “dangling” bonds. Atoms of a gas such as hydrogen, oxygen or nitrogen can saturate the dangling bonds.

“These dangling bonds can also react with interstitial atoms, and remove them from the crystal,” Seebauer said. “The process selectively pulls silicon interstitials to the surface, while leaving active dopant atoms in place. The preferential removal of silicon interstitials is exactly what is needed to both suppress dopant diffusion and increase dopant activation.”

Seebauer and his colleagues – chemical and biomolecular engineering professor Richard Braatz and graduate research assistants Kapil Dev and Charlotte Kwok – use ammonia and other nitrogen-containing gases to saturate some of the dangling bonds and control the ability of the surface to remove interstitials.

“The amount of surface nitrogen compound formed, and therefore the number of dangling bonds that become saturated, can be varied by changing the type of gas and the degree of exposure,” Seebauer said. “As an added benefit, nitrogen compounds are also quite compatible with conventional chip manufacturing processes.”

Through computer simulations and experimental verification, the researchers have shown that “defect engineering” by means of surface chemistry can extend the life of current ion-implantation technology and create smaller, faster electronic devices. Seebauer will present the team’s latest findings at the 51st International Symposium of the AVS Science and Technology Society, to be held Nov. 14-19 in Anaheim, Calif.

Funding was provided by International SEMATECH and the National Science Foundation. The researchers have applied for a patent.


Contact:

James E. Kloeppel
Physical Sciences Editor
217-244-1073
kloeppel@uiuc.edu

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please us.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Memory Technology

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Magnetic vortices defy temperature fluctuations: Common magnetic mineral is reliable witness to Earth's history April 19th, 2016

A single-atom magnet breaks new ground for future data storage April 15th, 2016

Nanoelectronics

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New type of graphene-based transistor will increase the clock speed of processors: Scientists have developed a new type of graphene-based transistor and using modeling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices May 19th, 2016

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Discoveries

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic