Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Control of Molecular Switches Increased

September 30th, 2004

Control of Molecular Switches Increased

Abstract:
A means to stabilize molecular switches based on chemical interactions with surrounding molecules has been developed at by a research team lead by Penn State Professor of Chemistry and Physics Paul S. Weiss.

Story:

Control of Molecular Switches Increased by Tailored Molecular Interactions

Eberly College of Science

A means to stabilize molecular switches based on chemical interactions with surrounding molecules has been developed at by a research team lead by Penn State Professor of Chemistry and Physics Paul S. Weiss. While molecules known as OPEs (oligo phenlylene-ethynylene molecules) previously have been shown to switch randomly or with applied electric fields between conductive (ON) and non-conductive (OFF) states, their potential use as switches in computers and other electronic devices depends on the ability to control these states. Such switches could advance nanoscale computer applications, decreasing the size and energy costs of memory.

A paper describing the research results, titled "Mediating Stochastic Switching of Single Molecules Using Chemical Functionality," will be published in the Journal of the American Chemical Society on 6 October 2004.

"If we can stabilize and control the conductance state, we are closer to developing molecular memory components," says Weiss, whose research team includes James E. Hutchison, professor of chemistry at the University of Oregon and James M. Tour, professor of chemistry at Rice University. "The chemical interactions that we observed reduce random switching, which could decrease the refresh rate needed for a random-access-memory device and significantly reduce power usage." Weiss points out that this research is providing basic information about the mechanism of switching and that its application in computers is not imminent.

The researchers varied the local chemical environment of the molecules by inserting OPE molecules into the matrix of a self-assembled monolayer of amide-containing alkanethiol molecules attached to a gold surface. The monolayer consists of long molecules extending outward from the surface. The OPE molecules physically extend beyond the monolayer and can be detected with a scanning tunneling microscope. Interactions between functional chemical groups on the OPE molecule and groups on the molecules of the monolayer stabilize the electronic state after it changes. A key observation is that the change can be induced when an electric field of the correct polarity is applied by the tip of the scanning tunneling microscope. "This reversibility supports our hypotheses about the mechanism of the switching and demonstrates that the chemical environment is crucial to the function of the switches," Weiss says. Reversibility is an essential factor in any application of OPE molecules as components in electronic devices.

The chemical interaction was based on hydrogen bonding between a nitro group attached to the OPE and amide groups attached to the surrounding molecules. Additional research is ongoing to measure the effects of other combinations of functional groups. "By engineering tailored intermolecular interactions into our molecular designs, we have introduced control to electronic switching of single molecules," says Weiss. The research is an essential step toward molecular engineering of computer components at the nanoscale.

This research was funded, in part, by the Army Research Office (ARO), Defense Advanced Research Projects Agency (DARPA), Office of Naval Research (ONR), National Institutes of Standards and Technology (NIST), National Science Foundation (NSF), and Department of Energy (DOE).


Contacts:

Paul S. Weiss
(+1) 814-865-3693
stm@psu.edu

Barbara K. Kennedy (PIO)
(+1) 814-863-4682
science@psu.edu

Copyright PSU

If you have a comment, please us.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Memory Technology

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Better memory with faster lasers July 14th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Discoveries

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project