Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Control of Molecular Switches Increased

September 30th, 2004

Control of Molecular Switches Increased

Abstract:
A means to stabilize molecular switches based on chemical interactions with surrounding molecules has been developed at by a research team lead by Penn State Professor of Chemistry and Physics Paul S. Weiss.

Story:

Control of Molecular Switches Increased by Tailored Molecular Interactions

Eberly College of Science

A means to stabilize molecular switches based on chemical interactions with surrounding molecules has been developed at by a research team lead by Penn State Professor of Chemistry and Physics Paul S. Weiss. While molecules known as OPEs (oligo phenlylene-ethynylene molecules) previously have been shown to switch randomly or with applied electric fields between conductive (ON) and non-conductive (OFF) states, their potential use as switches in computers and other electronic devices depends on the ability to control these states. Such switches could advance nanoscale computer applications, decreasing the size and energy costs of memory.

A paper describing the research results, titled "Mediating Stochastic Switching of Single Molecules Using Chemical Functionality," will be published in the Journal of the American Chemical Society on 6 October 2004.

"If we can stabilize and control the conductance state, we are closer to developing molecular memory components," says Weiss, whose research team includes James E. Hutchison, professor of chemistry at the University of Oregon and James M. Tour, professor of chemistry at Rice University. "The chemical interactions that we observed reduce random switching, which could decrease the refresh rate needed for a random-access-memory device and significantly reduce power usage." Weiss points out that this research is providing basic information about the mechanism of switching and that its application in computers is not imminent.

The researchers varied the local chemical environment of the molecules by inserting OPE molecules into the matrix of a self-assembled monolayer of amide-containing alkanethiol molecules attached to a gold surface. The monolayer consists of long molecules extending outward from the surface. The OPE molecules physically extend beyond the monolayer and can be detected with a scanning tunneling microscope. Interactions between functional chemical groups on the OPE molecule and groups on the molecules of the monolayer stabilize the electronic state after it changes. A key observation is that the change can be induced when an electric field of the correct polarity is applied by the tip of the scanning tunneling microscope. "This reversibility supports our hypotheses about the mechanism of the switching and demonstrates that the chemical environment is crucial to the function of the switches," Weiss says. Reversibility is an essential factor in any application of OPE molecules as components in electronic devices.

The chemical interaction was based on hydrogen bonding between a nitro group attached to the OPE and amide groups attached to the surrounding molecules. Additional research is ongoing to measure the effects of other combinations of functional groups. "By engineering tailored intermolecular interactions into our molecular designs, we have introduced control to electronic switching of single molecules," says Weiss. The research is an essential step toward molecular engineering of computer components at the nanoscale.

This research was funded, in part, by the Army Research Office (ARO), Defense Advanced Research Projects Agency (DARPA), Office of Naval Research (ONR), National Institutes of Standards and Technology (NIST), National Science Foundation (NSF), and Department of Energy (DOE).


Contacts:

Paul S. Weiss
(+1) 814-865-3693
stm@psu.edu

Barbara K. Kennedy (PIO)
(+1) 814-863-4682
science@psu.edu

Copyright PSU

If you have a comment, please us.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

New method to generate arbitrary optical pulses January 21st, 2015

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Memory Technology

Nano - "Green" metal oxides ... January 13th, 2015

Quantum optical hard drive breakthrough January 8th, 2015

Instant-start computers possible with new breakthrough December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Nanoelectronics

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Discoveries

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE