Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > News > Control of Molecular Switches Increased

September 30th, 2004

Control of Molecular Switches Increased

Abstract:
A means to stabilize molecular switches based on chemical interactions with surrounding molecules has been developed at by a research team lead by Penn State Professor of Chemistry and Physics Paul S. Weiss.

Story:

Control of Molecular Switches Increased by Tailored Molecular Interactions

Eberly College of Science

A means to stabilize molecular switches based on chemical interactions with surrounding molecules has been developed at by a research team lead by Penn State Professor of Chemistry and Physics Paul S. Weiss. While molecules known as OPEs (oligo phenlylene-ethynylene molecules) previously have been shown to switch randomly or with applied electric fields between conductive (ON) and non-conductive (OFF) states, their potential use as switches in computers and other electronic devices depends on the ability to control these states. Such switches could advance nanoscale computer applications, decreasing the size and energy costs of memory.

A paper describing the research results, titled "Mediating Stochastic Switching of Single Molecules Using Chemical Functionality," will be published in the Journal of the American Chemical Society on 6 October 2004.

"If we can stabilize and control the conductance state, we are closer to developing molecular memory components," says Weiss, whose research team includes James E. Hutchison, professor of chemistry at the University of Oregon and James M. Tour, professor of chemistry at Rice University. "The chemical interactions that we observed reduce random switching, which could decrease the refresh rate needed for a random-access-memory device and significantly reduce power usage." Weiss points out that this research is providing basic information about the mechanism of switching and that its application in computers is not imminent.

The researchers varied the local chemical environment of the molecules by inserting OPE molecules into the matrix of a self-assembled monolayer of amide-containing alkanethiol molecules attached to a gold surface. The monolayer consists of long molecules extending outward from the surface. The OPE molecules physically extend beyond the monolayer and can be detected with a scanning tunneling microscope. Interactions between functional chemical groups on the OPE molecule and groups on the molecules of the monolayer stabilize the electronic state after it changes. A key observation is that the change can be induced when an electric field of the correct polarity is applied by the tip of the scanning tunneling microscope. "This reversibility supports our hypotheses about the mechanism of the switching and demonstrates that the chemical environment is crucial to the function of the switches," Weiss says. Reversibility is an essential factor in any application of OPE molecules as components in electronic devices.

The chemical interaction was based on hydrogen bonding between a nitro group attached to the OPE and amide groups attached to the surrounding molecules. Additional research is ongoing to measure the effects of other combinations of functional groups. "By engineering tailored intermolecular interactions into our molecular designs, we have introduced control to electronic switching of single molecules," says Weiss. The research is an essential step toward molecular engineering of computer components at the nanoscale.

This research was funded, in part, by the Army Research Office (ARO), Defense Advanced Research Projects Agency (DARPA), Office of Naval Research (ONR), National Institutes of Standards and Technology (NIST), National Science Foundation (NSF), and Department of Energy (DOE).


Contacts:

Paul S. Weiss
(+1) 814-865-3693
stm@psu.edu

Barbara K. Kennedy (PIO)
(+1) 814-863-4682
science@psu.edu

Copyright PSU

If you have a comment, please us.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

Memory Technology

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

New metamaterials can change properties with a flick of a light-switch: Material can lead to new optical devices August 3rd, 2016

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Nanoelectronics

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Discoveries

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic