Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites

Researchers from the Tokyo University of Science evaluated the utility of C/UHTCMC at temperatures above 2000 oC using arc-wind tunnel testing (pictured above). These results show degradation of the composite at high temperatures, which is an important result for the manufacture of advanced space shuttle orbiters.

CREDIT
Ryo Inoue from Tokyo University of Science, Japan
Researchers from the Tokyo University of Science evaluated the utility of C/UHTCMC at temperatures above 2000 oC using arc-wind tunnel testing (pictured above). These results show degradation of the composite at high temperatures, which is an important result for the manufacture of advanced space shuttle orbiters. CREDIT Ryo Inoue from Tokyo University of Science, Japan

Abstract:
Carbon fiber-reinforced carbon (C/C) is a composite material made of carbon fiber reinforced in a matrix of glassy carbon or graphite. It is best known as the material used in hypersonic vehicles and space shuttle orbiters, which cruise at speeds greater than Mach 5. Since the 1970s, it has also been used in the brake system in Formula One racing cars. Even though C/C has excellent mechanical properties at high temperatures and inert atmospheres, it lacks oxidation resistance in these conditions, making its widespread use limited.

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites

Tokyo, Japan | Posted on November 18th, 2022

Researchers have found that ultra-high-temperature ceramics (UHTCs), which include transition metal carbides and diborides, show good oxidation resistance. In previous studies, zirconium-titanium (Zr-Ti) alloy infiltration has shown promising results for improving the heat resistance of carbon fiber-reinforced UHTC matrix composites (C/UHTCMCs). However, their use at high temperatures (>2000 oC) is not known.

Set against this backdrop, a group of researchers from Japan have evaluated the potential utility of Zr-Ti alloy-infiltrated C/UHTCMCs at temperatures above 2000 oC. Their study, led by Junior Associate Professor Ryo Inoue from Tokyo University of Science (TUS), was published in the Journal of Materials Science and made available online on October 27, 2022. The research team consisted of Mr. Noriatsu Koide and Assistant Professor Yutaro Arai from TUS, Professor Makoto Hasegawa from Yokohama National University, and Dr. Toshiyuki Nishimura from the National Institute for Materials Science.

Speaking of the motivation behind their study, “The research is an extension of the research and development of ceramics and ceramics-based composite materials. In recent years, we have received inquiries from several manufacturers of heavy industries regarding materials that can be used at temperatures above 2000 °C. We have also started to work with these manufacturers to develop new materials,” says Prof. Inoue.

The C/UHTCMC was manufactured using melt infiltration, which is the most cost-effective way to fabricate these materials. To study the applicability of this material, three types of C/UHTCMCs were fabricated with three different alloy compositions. The three alloy compositions used had varying atomic ratios of Zr:Ti. To characterize the heat resistance, the team used a method called arc-wind tunnel testing. This method involves exposing the material to extremely high enthalpy airflow inside a tunnel, similar to conditions that spacecrafts experience while re-entering the atmosphere.

The team found that the amount of Zr in the alloy had a strong effect on the degradation of the composite for all temperatures. This is owing to the thermodynamic preference for the oxidation of Zr-rich carbides compared to Ti-rich carbides. Further, the Zr and Ti oxides formed on the composite surface prevented further oxidation, and the oxide composition depended on the composition of the infiltrated alloys. Thermodynamic analysis revealed that the oxides formed on the composite surface were composed of ZrO2, ZrTiO4, and TiO2 solid solutions.

At temperatures above 2000 oC, the thickness and weight of the samples increased with the Zr content of the composites after the arc-wind tunnel tests. The team also observed that the melting point of the surface oxides increased as the Zr content increased. For temperatures above 2600 oC, the only oxides formed were liquid-phase, requiring a thermodynamic design of the matrix composition to prevent the recession of UHTC composites.

“We have successfully studied the degradation of C/UHTCMC at temperatures above 2000 oC using thermodynamic analysis. We have also shown that the matrix design needs modification to prevent the degradation of the composites. Our research has the potential to contribute to the realization of ultra-high-speed passenger aircraft, re-entry vehicle, and other hypersonic vehicles,” concludes Prof. Inoue.

These results could have important consequences in the production of advanced space shuttle orbiters and high-speed vehicles.

####

About Tokyo University of Science
Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan's development in science through inculcating the love for science in researchers, technicians, and educators.

With a mission of “Creating science and technology for the harmonious development of nature, human beings, and society", TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today's most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.

Website: https://www.tus.ac.jp/en/mediarelations/



About Junior Associate Professor Ryo Inoue from Tokyo University of Science
Dr Ryo Inoue obtained a PhD degree from the University of Tokyo, Japan, in 2014, and worked there for a year as a project researcher. He joined the Tokyo University of Science in 2015 as an Assistant Professor of the Department of Materials Science and Technology. He now leads the Inoue Laboratory as a Junior Associate Professor of the Department of mechanical Engineering, where he develops and studies composite materials for automobiles, aircrafts, and research. He has 92 publications credited to him and 649 citations to his name.

Funding information
This study was partially supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant-in-Aid for challenging Exploratory Research), Grant Number 21K18782, and JSPS KAKENHI (Grant-in-Aid for Early Career Scientists), Grant Number 22K14152.

For more information, please click here

Contacts:
Hiroshi Matsuda
Tokyo University of Science

Copyright © Tokyo University of Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Graphene/ Graphite

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023

Ribbons of graphene push the material’s potential: A new technique developed at Columbia offers a systematic evaluation of twist angle and strain in layered 2D materials August 11th, 2023

Govt.-Legislation/Regulation/Funding/Policy

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Possible Futures

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Discoveries

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Materials/Metamaterials/Magnetoresistance

Porous platinum matrix shows promise as a new actuator material November 17th, 2023

A new kind of magnetism November 17th, 2023

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

Announcements

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Aerospace/Space

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

The National Space Society Congratulates NASA on the Success of Artemis I Same-day Launch of the Hakuto-R Lunar Landing Mission will Help Support Future Lunar Crews December 12th, 2022

Surface microstructures of lunar soil returned by Chang’e-5 mission reveal an intermediate stage in space weathering process September 30th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project