Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Surface microstructures of lunar soil returned by Chang’e-5 mission reveal an intermediate stage in space weathering process

FeO-nanoparticle-embedded amorphous rim outside of olivine grain returned by Chang’e-5 mission
CREDIT
©Science China Press
FeO-nanoparticle-embedded amorphous rim outside of olivine grain returned by Chang’e-5 mission CREDIT ©Science China Press

Abstract:
This study is conducted by a joint team from Chinese Academy of Sciences. They use aberration-corrected transmission electron microscopy (TEM), Electron-energy loss spectroscopy (EELS) and scanning transmission electron microscopy (STEM) to examine the microstructures and chemical compositions at nano/atomic scales of 25 soil grains (1-3 μm in size) from Sample CE5C0400YJFM00507 (1.5 g).

Surface microstructures of lunar soil returned by Chang’e-5 mission reveal an intermediate stage in space weathering process

Beijing, China | Posted on September 30th, 2022

The soil mainly includes minerals olivine, pyroxene, anorthite and glass bead. To avoid possible chemical contamination and ion-bombing-induced amorphization, they do not employ the focused ion beam (FIB) to cut the bulk samples except glass bead. Firstly, they unambiguously identify the wüstite FeO nanoparticles instead of npFe0 that are embedded in amorphous SixOy rims outside the olivine grains. This unique rim structure has not been reported for any other lunar, terrestrial, Martian, or meteorite samples so far. Given that the nano-phase Fe is the final product of decomposing olivine Fe2SiO4, they suggest that wüstite FeO may serve as an intermediate state of the thermal decomposition process, and then the FeO may further transform into nano-phase Fe with the aid of in the presence of cosmic radiation or solar flare. Secondly, for pyroxene and anorthite, the chemical compositions of surface areas are identical to interior parts, and there is no SixOy rim outside sample. Meanwhile, no foreign volatile elements deposition layer and solar flare tracks can be found on the surface or inside the olivine and other minerals. Such findings imply that the studied samples do not undergo severe space weathering, and the underlying mechanism deserves further investigation. It provides clues or constraints on the incipient formation mechanism of rim structure under space weathering.

####

For more information, please click here

Contacts:
Bei Yan
Science China Press


Expert Contact

Jian-gang Guo
Institute of Physics, Chinese Academy of Sciences

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Aerospace/Space

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project