Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments

Abstract:
Polyimide (PI) composite films are widely used on the external surfaces of spacecraft to protect them from the adverse environments of low Earth orbit (LEO) due to their outstanding comprehensive performance. However, current PI composite films have inadequate mechanical properties and atomic oxygen (AO) resistance.

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments

Hefei, China | Posted on December 3rd, 2021

In a study published in Advanced Materials, a research team led by Prof. YU Shuhong from University of Science and Technology of China (USTC) of the Chinese Academy of Sciences proposed a unique double-layer nacre-inspired structural design strategy, and fabricated a new PI-based nanocomposite film with greatly enhanced mechanical properties and AO resistance.

Inspired by the brick-and-mortar microstructure of natural nacre, researchers assembled mica nanosheets and PI into a double-layer nacre-inspired structure with a much higher density of mica in the top layer, which was achieved via a straightforward spray assisted assembly followed by a thermo-curing process.

By optimizing the component proportions and top layer thickness, the mechanical properties of the double-layer PI-Mica film were significantly enhanced. The tensile strength, Young’s modulus, and surface hardness of the double-layer film were 45%, 100%, and 68% higher than those of pure PI films, respectively.

By virtue of the unique double-layer nacre-inspired structure and the intrinsic advantages of mica nanosheets, the obtained double-layer PI-Mica film achieved much better AO resistance, UV aging resistance (313 nm), and high-temperature stability (380 ℃) than pure PI film. In addition, both AO fluence and erosion yield characteristics of the double-layer PI-Mica film are superior to previously reported PI-based composites. Thus, this double-layer PI-Mica film may serve as a new type of aerospace protective material, replacing existing PI-based composite films for LEO applications.

The unique double-layer nacre-inspired structural design provides a promising avenue for future design and fabrication of other high-performance bioinspired nanocomposites for diverse applications.

####

For more information, please click here

Contacts:
Jane fan
University of Science and Technology of China

Copyright © University of Science and Technology of China (USTC)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Aerospace/Space

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project