Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New type of ultrahigh piezoelectricity in hydrogen-bonded ferroelectrics

The change of polarization upon a strain in (a) perovskite ferroelectrics and (b) HP ferroelectrics, where the black/green curve represent the dependence of polarization on temperature before/after a tensile strain is applied. Red, white and grey spheres denote O, H and C atoms respectively.

CREDIT
©Science China Press
The change of polarization upon a strain in (a) perovskite ferroelectrics and (b) HP ferroelectrics, where the black/green curve represent the dependence of polarization on temperature before/after a tensile strain is applied. Red, white and grey spheres denote O, H and C atoms respectively. CREDIT ©Science China Press

Abstract:
Prevalent piezoelectric materials like barium titanate (BaTiO3) and lead zirconate titanate (PZT) possess high piezoelectric coefficients 20-800 pC/N, which are also ferroelectric. The Curie temperature of those ferroelectrics are mostly far above room temperature, so the change of polarization ΔP upon a strain at room temperature is approximately the same as ΔP0 at 0K.

New type of ultrahigh piezoelectricity in hydrogen-bonded ferroelectrics

Beijing, China | Posted on November 20th, 2020

Recently, scientists at Huazhong University of Science and Technology and at the Nanjing University in China proposed a new possibility of inducing ultra-high piezoelectric coefficient, which will be theoretically infinitely large if the Curie temperature is right at the working temperature and sensitive to strain. Well-known ferroelectric perovskites like BaTiO3 or PZT are not such candidates due to their high Curie temperature that is insensitive to strain. However, many hydrogen-bonded ferroelectrics with Curie temperature ranging from 200 to 400K can be ideal candidates, which are also soft, flexible and lead-free. For examples, the measured Curie temperature of organic PhMDA and [H-55DMBP][Hia] were respectively 363 and 268K. For hydrogen bonds like O-H...O, each proton will be covalently bonded to only one side of O atom due to the saturation of covalent bond. The O-H bond is on the verge of breaking at the hopping transition state where the proton locates at the midpoint. Due to the brittle nature of covalent bond, if the O-H...O bonds are prolonged upon a tensile strain, the hopping barrier as well as Curie temperature may be greatly enhanced with a much larger transfer distance. Meanwhile their hydrogen-bonded network can be easily compressed or stretched due to low bulk modulus.

The authors have shown first-principles evidence combined with Monte Carlo simulation, that the proton-transfer barriers as well as the Curie temperature of some hydrogen-bonded ferroelectrics can be approximately doubled upon a tensile strain of as low as 2 %. Their Curie temperature can be tuned exactly to room-temperature by applying a fixed strain in one direction, and the systems will exhibit ultra-high piezoelectricity in another direction. The unprecedented piezoelectric coefficient of 2058 pC/N obtained in PhMDA is more than 3 times higher than PZT, and an order of magnitude higher than the highest value obtained in current lead-free piezoelectrics. This value is even underestimated and can be greatly enhanced upon smaller strain. Since this proposed principle for such piezoelectricity can be applied to most hydrogen-bonded ferroelectrics, the large number of organic or inorganic candidates should facilitate its experimental realizations and optimizations in future, which will be a breakthrough for the long-sought lead-free high-coefficient piezoelectrics. This mechanism may also clarify the previously reported drastic rise in piezoelectric coefficient for SbSI when approaching its Curie temperature.

####

For more information, please click here

Contacts:
Menghao Wu

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Magnetism/Magnons

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project