Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > May the force be with you: Detecting ultrafast light by its force: From cell phones to solar cells - research has implications for improvements in a wide range of technologies

Abstract:
A McGill research team has developed a new technique to detect nano-sized imperfections in materials. They believe this discovery will lead to improvements in the optical detectors used in a wide range of technologies, from cell phones to cameras and fiber optics, as well as in solar cells.

May the force be with you: Detecting ultrafast light by its force: From cell phones to solar cells - research has implications for improvements in a wide range of technologies

Montreal, Canada | Posted on August 7th, 2020

The researchers, led by Professor Peter Grutter from McGill's Physics Department, used atomic force microscopy to detect the ultrafast forces that arise when light interacts with matter. In their paper, published this week in PNAS, they demonstrate that forces arising from two, time-delayed light pulses can be detected with sub-femtosecond precision (these are millionths of a billionth of a second) and nanometer spatial resolution in a wide range of materials.

Improved technique for using light to detect imperfections in materials

"To understand and improve materials, scientists typically use light pulses faster than 100 femtoseconds to explore how quickly reactions occur and determine the slowest steps in the process," explains Zeno Schumacher, the paper's first author who was a post-doctoral fellow in Grutter's lab when the research was done and is now based at ETH Zurich. "The electric field of a light pulse oscillates every few femtoseconds and will push and pull on the atomic-sized charges and ions that comprise matter. These charged bodies then move, or polarize, under these forces and it is this motion that determines a material's optical properties."

Real materials used in solar cells (also known as photovoltaics) and in the optical detectors used in equipment like cell phones and cameras have many imperfections and defects of different types that are very difficult to characterize, as they are typically only a nanometer in size. Moreover, it has been very challenging to identify and study the 'hot spots' and 'weak links' in the materials that can slow down or hinder light induced processes because traditional techniques for detecting imperfections average over differences in properties at a larger area.

Seeing nanoscale imperfections in a range of materials

The new technique developed by the McGill team combines ultrafast nonlinear optical methods with the high spatial resolution of atomic force microscopy. They have demonstrated that their technique works on an insulating non-linear optical material (LiNbO3) as well as a nanometer thin, two-dimensional semiconducting flake of molybdenum diselenide (MoSe2), an inorganic compound used in optical and scanning-probe microscopy.

"Our new technique is applicable to any material, such as metals, semiconductors and insulators," says Peter Grutter, the senior author on the paper. "It will enable use high spatial and temporal resolution to study, understand and ultimately control for imperfections in photovoltaic materials. Ultimately, it should help us improve solar cells and the optical detectors used in a wide range of technologies."

###


The research was supported by Natural Sciences and Engineering Research Council of Canada (NSERC, les Fonds de recherche du Québec - Nature et technologies (FRQNT), and the Canada Foundation for Innovation (CFI).

####

About McGill University
Founded in Montreal, Quebec, in 1821, McGill University is Canada's top ranked medical doctoral university. McGill is consistently ranked as one of the top universities, both nationally and internationally. It is a world-renowned institution of higher learning with research activities spanning two campuses, 11 faculties, 13 professional schools, 300 programs of study and over 40,000 students, including more than 10,200 graduate students. McGill attracts students from over 150 countries around the world, its 12,800 international students making up 31% of the student body. Over half of McGill students claim a first language other than English, including approximately 19% of our students who say French is their mother tongue.

For more information, please click here

Contacts:
Katherine Gombay

514-717-2289

@McGillU

Copyright © McGill University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To read "Nanoscale force sensing of an ultrafast nonlinear optical response" by Zeno Schumacher et al in PNAS doi:10.1073/pnas.2003945117

Related News Press

News and information

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Possible Futures

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Optical computing/Photonic computing

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023

Scientists edge toward scalable quantum simulations on a photonic chip: A system using photonics-based synthetic dimensions could be used to help explain complex natural phenomena June 30th, 2023

USTC enhances fluorescence brightness of single silicon carbide spin color centers June 9th, 2023

Discoveries

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Announcements

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Photonics/Optics/Lasers

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023

Ultrafast lasers for materials processing August 11th, 2023

Solar/Photovoltaic

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

New method addresses problem with perovskite solar cells: NREL researchers provide growth approach that boosts efficiency, stability December 29th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project