Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > 2D materials may enable electric vehicles to get 500 miles on a single charge

2D catalysts power an electric vehicle. (Image: Amin Salehi-Khojin)
2D catalysts power an electric vehicle. (Image: Amin Salehi-Khojin)

Abstract:
Lithium-air batteries are poised to become the next revolutionary replacement for currently used lithium-ion batteries that power electric vehicles, cell phones and computers.

2D materials may enable electric vehicles to get 500 miles on a single charge

Chicago, IL | Posted on January 11th, 2019

Lithium-air batteries, which currently are still in the experimental stages of development, can store 10 times more energy than lithium-ion batteries, and they are much lighter. That said, lithium-air batteries could be even more efficient and provide more charge with the incorporation of advanced catalysts made from two-dimensional materials. Catalysts help increase the rate of chemical reactions inside batteries, and depending on the type of material from which the catalyst is made, they can help significantly boost the ability of the battery to hold and provide energy.

"We are going to need very high-energy density batteries to power new advanced technologies that are incorporated into phones, laptops and especially electric vehicles," said Amin Salehi-Khojin, associate professor of mechanical and industrial engineering in UIC's College of Engineering. Salehi-Khojin and his colleagues synthesized several 2D materials that can serve as catalysts. A number of their 2D materials, when incorporated into experimental lithium-air batteries as the catalyst, enabled the battery to hold up to 10 times more energy than lithium-air batteries containing traditional catalysts. Their findings are published in the journal Advanced Materials.

"Currently, electric vehicles average about 100 miles per charge, but with the incorporation of 2D catalysts into lithium-air batteries, we could provide closer to 400 to 500 miles per charge, which would be a real game-changer," said Salehi-Khojin, who is also the corresponding author of the paper. "This would be a huge breakthrough in energy storage."

Salehi-Khojin and his colleagues synthesized 15 different types of 2D transition metal dichalcogenides or TMDCs. TMDCs are unique compounds because they have high electronic conductivity and fast electron transfer that can be used to participate in reactions with other materials, such as the reactions that take place inside batteries during charging and discharging.

The investigators experimentally studied the performance of 15 TMDCs as catalysts in an electrochemical system mimicking a lithium-air battery.

"In their 2D form, these TMDCs have much better electronic properties and greater reactive surface area to participate in electrochemical reactions within a battery while their structure remains stable," explained Leily Majidi, a graduate student in the UIC College of Engineering and first author of the paper.

"Reaction rates are much higher with these materials compared to conventional catalysts used such as gold or platinum," Majidi said.

One of the reasons the 2D TDMCs performed so well is because they help speed both charging and discharging reactions occurring in lithium-air batteries.

"This would be what is known as bi-functionality of the catalyst," Salehi-Khojin said.

The 2D materials also synergize with the electrolyte--the material through which ions move during charge and discharge.

"The 2D TDMCs and the ionic liquid electrolyte that we used acts as a co-catalyst system that helps the electrons transfer faster, leading to faster charges and more efficient storage and discharge of energy."

"These new materials represent a new avenue that can take batteries to the next level, we just need to develop ways to produce and tune them more efficiently and in larger scales," Salehi-Khojin said.

###

Poya Yasaei, Zahra Hemmat, Pedram Abbasi, Shadi Fuladi, Xuan Hu, Robert Klie, Fatemeh Khalili-Araghi and Baharak Sayahpour of the University of Illinois at Chicago and Robert Warburton and Jeffrey Greeley of Purdue University are coauthors on the paper.

This research was supported in part by the National Science Foundation DMREF Grant 1729420.

####

For more information, please click here

Contacts:
Sharon Parmet

312-413-2695

Copyright © University of Illinois at Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

2 Dimensional Materials

You're not so tough, h-BN: Rice University chemists find new path to make strong 2D material better for applications August 14th, 2019

Sharp meets flat in tunable 2D material: Rice's new atom-flat compounds show promise for optoelectronics, advanced computing August 12th, 2019

A modified device fabrication process achieves enhanced spin transport in graphene August 6th, 2019

Physicists make graphene discovery that could help develop superconductors: Rutgers-led research could reduce energy use, improve electronic devices August 1st, 2019

Govt.-Legislation/Regulation/Funding/Policy

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

You're not so tough, h-BN: Rice University chemists find new path to make strong 2D material better for applications August 14th, 2019

Possible Futures

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Materials/Metamaterials

You're not so tough, h-BN: Rice University chemists find new path to make strong 2D material better for applications August 14th, 2019

A modified device fabrication process achieves enhanced spin transport in graphene August 6th, 2019

Rice lab produces simple fluorescent surfactants: Compounds show promise for use in medicine, manufacturing August 5th, 2019

Wood You Like Some Fresh Water? New treatment for wood makes a membrane to extract fresh water August 5th, 2019

Announcements

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

Automotive/Transportation

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Activity of fuel cell catalysts doubled: Modelling leads to the optimum size for platinum fuel cell catalysts July 5th, 2019

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Tiny vibration-powered robots are the size of the world's smallest ant July 19th, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Flexible generators turn movement into energy: Rice University's laser-induced graphene nanogenerators could power future wearables June 2nd, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project