Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Cryo-electron microscopy achieves unprecedented resolution using new computational methods

Complete capsid of bacteriophage P22 generated with validated atomic models that were derived from a high-resolution cryo-electron microscopy density map.
CREDIT
C. Hryc and the Chiu Lab, Baylor College of Medicine
Complete capsid of bacteriophage P22 generated with validated atomic models that were derived from a high-resolution cryo-electron microscopy density map. CREDIT C. Hryc and the Chiu Lab, Baylor College of Medicine

Abstract:
Cryo-electron microscopy (cryo-EM)--which enables the visualization of viruses, proteins, and other biological structures at the molecular level--is a critical tool used to advance biochemical knowledge. Now Lawrence Berkeley National Laboratory (Berkeley Lab) researchers have extended cryo-EM's impact further by developing a new computational algorithm that was instrumental in constructing a 3-D atomic-scale model of bacteriophage P22 for the first time.

Cryo-electron microscopy achieves unprecedented resolution using new computational methods

Berkeley, CA | Posted on March 25th, 2017

Over 20,000 two-dimensional cryo-EM images of bacteriophage P22 (also known as the P22 virus that infects the common bacterium Salmonella) from Baylor College of Medicine were used to make the model. The results were published by researchers from Baylor College of Medicine, Massachusetts Institute of Technology, Purdue University and Berkeley Lab in the Proceedings of the National Academies of Sciences earlier in March.

"This is a great example of how to exploit electron microscopy technology and combine it with new computational methods to determine a bacteriophage's structure," said Paul Adams, Berkeley Lab's Molecular Biophysics & Integrated Bioimaging division director and a co-author of the paper. "We developed the algorithms -- the computational code -- to optimize the atomic model so that it best fit the experimental data."

Pavel Afonine, a Berkeley Lab computational research scientist and paper co-author, took the lead in developing the algorithm using Phenix, a software suite used traditionally in X-ray crystallography for determining macromolecular structures.

The successful rendering of bacteriophage P22's 3-D atomic-scale model allows researchers to peek inside the virus' protein coats at resolution. It is the culmination of several years of work that previously had enabled Baylor College researchers to trace out most of the protein's backbone, but not the fine details, according to Corey Hryc, co-first author and a graduate student of Baylor biochemistry professor Wah Chiu.

"Thanks to this exquisite structural detail, we have determined the protein chemistry of the P22 virus," Chiu said. "I think it is important that we provide detailed annotations with the structure so other researchers can use it for their future experiments," he added. Chiu's lab has been using cryo-EM and computer reconstruction techniques to build 3-D molecular structures for almost 30 years.

And the findings could have valuable biological implications as well.

Thanks to the 3-D atomic-scale model, it's now "possible to see the interactions between the pieces making up the P22 virus, which are critical to making it stable," Adams said. This helps researchers figure out how to make chemicals that can bind to certain proteins. Adams underscores that the ability to understand the configuration of atoms in molecular space can be used to generate new insights into drug design and development.

###

The National Institutes of Health funded this work.

####

About Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Jon Weiner

510-486-4014

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superconductivity in high-Tc cuprates: ‘from maximal to minimal dissipation’ - a new paradigm? July 30th, 2021

Researchers find 'layer Hall effect' in a 2D topological Axion antiferromagnet: It is first experimental evidence of this type of quantum state and can one day help generate a magneto-electric effect July 30th, 2021

Water as a metal July 30th, 2021

UCF researchers develop new nanomaterial to derive clean fuel from the sea: The material offers the high performance and stability needed for industrial-scale electrolysis, which could produce a clean energy fuel from seawater July 30th, 2021

Laboratories

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Argonne researchers use AI to optimize a popular material coating technique in real time June 25th, 2021

Putting functional proteins in their place: Using DNA-based assembly, scientists developed a method for creating designed and biologically active 2-D and 3-D protein arrays, which show promise for applications in structural biology, biomaterials, nanomedicine, and biocatalysis June 25th, 2021

Magnetism drives metals to insulators in new experiment: Study provides new tools to probe novel spintronic devices June 4th, 2021

New form of silicon could enable next-gen electronic and energy devices: Novel crystalline form of silicon could potentially be used to create next-generation electronic and energy devices June 4th, 2021

Imaging

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Chaotic electrons heed ‘limit’ in strange metals July 30th, 2021

UVA Engineering researchers join quest to demonstrate photonic systems-on-chip: Future applications include faster, more efficient data centers and next-generation millimeter-wave wireless communication July 30th, 2021

The virus trap: Hollow nano-objects made of DNA could trap viruses and render them harmless July 16th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Possible Futures

Non-linear effects in coupled optical microcavities July 30th, 2021

Lifeboat Foundation Guardian Winner Jeff Bezos Donates One Million to Lifeboat Foundation Dream Project Winner Teachers in Space July 30th, 2021

Superconductivity in high-Tc cuprates: ‘from maximal to minimal dissipation’ - a new paradigm? July 30th, 2021

Researchers find 'layer Hall effect' in a 2D topological Axion antiferromagnet: It is first experimental evidence of this type of quantum state and can one day help generate a magneto-electric effect July 30th, 2021

Nanomedicine

The virus trap: Hollow nano-objects made of DNA could trap viruses and render them harmless July 16th, 2021

NYUAD study maps nanobody structure, leading to new ways to potentially fight diseases July 4th, 2021

Optical tweezer technology tweaked to overcome dangers of heat June 25th, 2021

Arrowhead Presents Preclinical Data on ARO-DUX4 at FSHD Society International Research Congress June 25th, 2021

Discoveries

Non-linear effects in coupled optical microcavities July 30th, 2021

Superconductivity in high-Tc cuprates: ‘from maximal to minimal dissipation’ - a new paradigm? July 30th, 2021

Researchers find 'layer Hall effect' in a 2D topological Axion antiferromagnet: It is first experimental evidence of this type of quantum state and can one day help generate a magneto-electric effect July 30th, 2021

Chaotic electrons heed ‘limit’ in strange metals July 30th, 2021

Announcements

Water as a metal July 30th, 2021

UCF researchers develop new nanomaterial to derive clean fuel from the sea: The material offers the high performance and stability needed for industrial-scale electrolysis, which could produce a clean energy fuel from seawater July 30th, 2021

Chaotic electrons heed ‘limit’ in strange metals July 30th, 2021

Scientists release new AI-based tools to accelerate functional electronic materials discovery: The work could allow scientists to accelerate the discovery of materials showing a metal-insulator transition July 30th, 2021

Tools

Optical tweezer technology tweaked to overcome dangers of heat June 25th, 2021

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

A novel nitrogen-doped dual-emission carbon dots as an effective fluorescent probe for ratiometric detection dopamine June 1st, 2021

Using the environment to control quantum devices: A deeper understanding of how the environment impacts quantum behaviour is bringing quantum devices one step closer to widespread adoption June 1st, 2021

Nanobiotechnology

The virus trap: Hollow nano-objects made of DNA could trap viruses and render them harmless July 16th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

NYUAD study maps nanobody structure, leading to new ways to potentially fight diseases July 4th, 2021

Putting functional proteins in their place: Using DNA-based assembly, scientists developed a method for creating designed and biologically active 2-D and 3-D protein arrays, which show promise for applications in structural biology, biomaterials, nanomedicine, and biocatalysis June 25th, 2021

Research partnerships

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Stress-free path to stress-free metallic films paves the way for next-gen circuitry: Optimized sputtering technique helps minimize stress in tungsten thin films July 4th, 2021

New family of atomic-thin electride materials discovered June 11th, 2021

Magnetism drives metals to insulators in new experiment: Study provides new tools to probe novel spintronic devices June 4th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project