Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Water-Repellent Nanotextures Found to Have Excellent Anti-Fogging Abilities: Cone-shaped nanotextures could prevent fog condensation on surfaces in humid environments, including for power generation and transportation applications

The series of optical microscope images (a) show the patterns formed by the condensation of water from a supersaturated atmosphere on surfaces textured with nanocylinders (top row) and nanocones (bottom row) throughout a 45-minute period. Both textures start out covered with microdroplets, but the cylindrical texture shows large droplets forming over time that stick to the surface. In contrast, the conical texture resists dew formation because the water droplets are so lightly adhered to the surface that, when two drops join together (b, top), they gain enough energy to spontaneously jump off the surface (b, bottom).
The series of optical microscope images (a) show the patterns formed by the condensation of water from a supersaturated atmosphere on surfaces textured with nanocylinders (top row) and nanocones (bottom row) throughout a 45-minute period. Both textures start out covered with microdroplets, but the cylindrical texture shows large droplets forming over time that stick to the surface. In contrast, the conical texture resists dew formation because the water droplets are so lightly adhered to the surface that, when two drops join together (b, top), they gain enough energy to spontaneously jump off the surface (b, bottom).

Abstract:
Some insect bodies have evolved the abilities to repel water and oil, adhere to different surfaces, and eliminate light reflections. Scientists have been studying the physical mechanisms underlying these remarkable properties found in nature and mimicking them to design materials for use in everyday life.

Water-Repellent Nanotextures Found to Have Excellent Anti-Fogging Abilities: Cone-shaped nanotextures could prevent fog condensation on surfaces in humid environments, including for power generation and transportation applications

Upton, NY | Posted on March 2nd, 2017

Several years ago, scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory developed a nanoscale surface-texturing method for imparting complete water repellency to materials-a property inspired by insect exoskeletons that have tiny hairs designed to repel water by trapping air. Their method leverages the ability of materials called block copolymers (chains of two distinct molecules linked together) to self-assemble into ordered patterns with dimensions measuring only tens of nanometers in size. The scientists used these self-assembled patterns to create nanoscale textures in a variety of inorganic materials, including silicon, glass, and some plastics. Initially, they studied how changing the shape of the textures from cylindrical to conical impacted materials' ability to repel water. Cone-shaped nanotextures proved much better at forcing water droplets to roll off, carrying dirt particles away and leaving surfaces completely dry.

Now, working with colleagues in France-from ESPCI Paris Tech, École Polytechnique, and the Thales Group-they have further shown that the optimized nanotextures have excellent anti-fogging abilities, as described in a paper published online in the Feb. 27 issue of Nature Materials. Led by David Quéré of ESPCI and École Polytechnique, the research provides a fundamental understanding that may inform new designs for condensing coils of steam turbine power generators, car and aircraft windshields, and other materials prone to fogging.

"Many textured materials can repel water, with millimeter-size water drops bouncing off their surfaces, but many of these surfaces fail when exposed to foggy or humid conditions," said Charles Black, director of Brookhaven Lab's Center for Functional Nanomaterials [ https://www.bnl.gov/cfn/ ] (CFN), the DOE Office of Science User Facility where Black and former physicist Antonio Checco of Brookhaven's Condensed Matter Physics and Materials Science Department and former CFN postdoctoral research associate Atikur Rahman fabricated the nanotextures.

Fog forms when warm, moist air hits a cooler surface (such as a window or windshield) and forms water droplets-a process called condensation. When water droplets are similar in size to the structural features of a textured hydrophobic ("water hating") surface, they can get inside and grow within the texture, instead of remaining on top. Once the texture fills up, water landing on the material gets stuck, resulting in the appearance of fog.

Scientists have previously observed that the wings of cicadas, which are covered by nanosized cone-shaped textures, have the ability to repel fog by causing water droplets to spontaneously jump off their surface-a phenomenon caused by the efficient conversion of surface energy to kinetic energy when two droplets combine. Motivated by this example from nature, the team investigated how reducing texture size and changing texture shape impacts the anti-fogging ability of a model surface.

To simulate fogging conditions, the scientists heated water and measured the adhesion force as warm water droplets cooled upon contacting the nanotextured surfaces. These measurements revealed that droplet adhesion was significantly affected by the type of surface nanotexture, with warm drops strongly sticking to those with large textures and hardly sticking at all to surfaces with the smallest ones.

"Textures with the smallest feature sizes and the appropriate shape-in this case, conical-resist fogging because condensing water droplets are too big to penetrate the texture. The droplets remain on top, essentially floating on the cushion of air trapped beneath," said Black.

The scientists next used an optical microscope connected to a high-resolution video camera to view droplet condensation on different textures during dew formation, when atmospheric moisture condenses faster than it evaporates. While all textures are initially covered by large numbers of microdroplets, over time textures with a cylindrical shape become covered in water, while the ones with a conical shape spontaneously dry themselves. Conical-shaped textures resist dew formation because the water droplets are so lightly adhered to the surface that when two drops join together, they gain enough energy to spontaneously jump off the surface, similar to the mechanism observed in cicada wings.

"This work represents the excellent, multiplicative power of DOE user facilities. In this case, CFN's initial collaboration with a user from one of Brookhaven's departments led to a new international connection with different users, who carried the study of hydrophobic surfaces in new directions," said Black.

This research was supported by the DOE Office of Science, the French Ministry of Defense procurement agency, and the Thales Group.

####

About Brookhaven National Laboratory
Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Ariana Tantillo
(631) 344-2347,

or
Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Scientific paper: "Antifogging abilities of model nanotextures":

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project