Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New, better way to build circuits for world's first useful quantum computers

The research team led by David Weiss at Penn State University performed a specific single quantum operation on individual atoms in a P-S-U pattern on three separate planes stacked within a cube-shaped arrangement. The team then used light beams to selectively sweep away all the atoms that were not targeted for that operation. The scientists then made pictures of the results by successively focusing on each of the planes in the cube. The photos, which are the sum of 20 implementations of this process, show bright spots where the atoms are in focus, and fuzzy spots if they are out of focus in an adjacent plane -- as is the case for all the light in the two empty planes. The photos also show both the success of the technique and the comparatively small number of targeting errors.
CREDIT: David Weiss lab, Penn State University
The research team led by David Weiss at Penn State University performed a specific single quantum operation on individual atoms in a P-S-U pattern on three separate planes stacked within a cube-shaped arrangement. The team then used light beams to selectively sweep away all the atoms that were not targeted for that operation. The scientists then made pictures of the results by successively focusing on each of the planes in the cube. The photos, which are the sum of 20 implementations of this process, show bright spots where the atoms are in focus, and fuzzy spots if they are out of focus in an adjacent plane -- as is the case for all the light in the two empty planes. The photos also show both the success of the technique and the comparatively small number of targeting errors.

CREDIT: David Weiss lab, Penn State University

Abstract:
The era of quantum computers is one step closer as a result of research published in the current issue of the journal Science. The research team has devised and demonstrated a new way to pack a lot more quantum computing power into a much smaller space and with much greater control than ever before. The research advance, using a 3-dimensional array of atoms in quantum states called quantum bits -- or qubits -- was made by David S. Weiss, professor of physics at Penn State University, and three students on his lab team. He said "Our result is one of the many important developments that still are needed on the way to achieving quantum computers that will be useful for doing computations that are impossible to do today, with applications in cryptography for electronic data security and other computing-intensive fields."

New, better way to build circuits for world's first useful quantum computers

University Park, PA | Posted on June 28th, 2016

The new technique uses both laser light and microwaves to precisely control the switching of selected individual qubits from one quantum state to another without altering the states of the other atoms in the cubic array. The new technique demonstrates the potential use of atoms as the building blocks of circuits in future quantum computers.

The scientists invented an innovative way to arrange and precisely control the qubits, which are necessary for doing calculations in a quantum computer. "Our paper demonstrates that this novel approach is a precise, accurate, and efficient way to control large ensembles of qubits for quantum computing," Weiss said.

The paper in Science describes the new technique, which Weiss's team plans to continue developing further. The achievement also is expected to be useful to scientists pursuing other approaches to building a quantum computer, including those based on other atoms, on ions, or on atom-like systems in 1 or 2 dimensions. "If this technique is adopted in those other geometries, they would also get this robustness," Weiss said.

To corral their quantum atoms into an orderly 3-D pattern for their experiments, the team constructed a lattice made by beams of light to trap and hold the atoms in a cubic arrangement of five stacked planes -- like a sandwich made with five slices of bread -- each with room for 25 equally spaced atoms. The arrangement forms a cube with an orderly pattern of individual locations for 125 atoms. The scientists filled some of the possible locations with qubits consisting of neutral cesium atoms -- those without a positive or a negative charge. Unlike the bits in a classical computer, which typically are either zeros or ones, each of the qubits in the Weiss team's experiment has the difficult-to-imagine ability to be in more than one state at the same time -- a central feature of quantum mechanics called quantum superposition.

Weiss and his team then use another kind of light tool -- crossed beams of laser light -- to target individual atoms in the lattice. The focus of these two laser beams, called "addressing" beams, on a targeted atom shifts some of that atom's energy levels by about twice as much as it does for those of any of the other atoms in the array, including those that were in the path of one of the addressing beams on its way to the target. When the scientists then bathe the whole array with a uniform wash of microwaves, the state of the atom with the shifted energy levels is changed, while the states of all the other atoms are not.

"We have set more qubits into different, precise quantum superpositions at the same time than in any previous experimental system," Weiss said. The scientists also designed their system to be very insensitive to the exact details of the alignments or the power of those light beams they use -- which Weiss said is a good thing because "you don't want to be dependent upon exactly what the intensity of the light is or exactly what the alignment is."

One of the ways that the scientists demonstrated their ability to change the quantum state of individual atoms was by changing the states of selected atoms in three of the stacked planes within the cubic array in order to draw the letters P, S, and U -- the letters that represent Penn State University. "We changed the quantum superposition of the PSU atoms to be different from the quantum superposition of the other atoms in the array," Weiss said. "We have a pretty high-fidelity system. We can do targeted selections with a reliability of about 99.7%, and we have a plan for making that more like 99.99%."

Among the goals that Weiss has for his team's future research is to get the qubits to "have entangled quantum wave functions where the state of one particle is implicitly correlated with the state of the other particles around it." Weiss said that this entangled connection between qubits is a critical element needed for quantum computing. He said he hopes that building on the techniques demonstrated in his team's prototype system eventually will enable his lab to demonstrate high-quality entangling operations for quantum computing. "Filling the cube with exactly one atom per site and setting up entanglements between atoms at any of the sites that we choose are among our nearer-term research goals," Weiss said.

###

In addition to Weiss, the other members of the Penn State research team are Yang Wang, Aishwarya Kumar, and Tsung-Yao Wu, all graduate students. The research was funded by the U.S. National Science Foundation.

####

For more information, please click here

Contacts:
Barbara K. Kennedy

814-863-4682

David Weiss

(+1) 814-863-3076

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NSS Announces Juno Project Scientist Dr. Scott Bolton as a Keynote Speaker at the 2021 Online ISDC: This Year’s Virtual Conference Streams Free to All June 24th, 2021

Arrowhead Presents Positive Interim Clinical Data on ARO-HSD Treatment in Patients with Suspected NASH at EASL International Liver Congress June 24th, 2021

NSS Fetes JPL’s Rob Manning and Robert Braun at the Online 2021 International Space Development Conference: This Year’s Virtual Conference Streams Free to All Beginning Thursday June 24th, 2021

Quantum Physics

Princeton-led team discovers unexpected quantum behavior in kagome lattice:Experiments suggest evidence for novel patterns of electronic charge distribution in a kagome material whose handedness can be manipulated with a magnetic field June 18th, 2021

Researchers take quantum encryption out of the lab: Field trial shows simple QKD system works with existing telecommunication network in Italy June 11th, 2021

Quantum holds the key to secure conference calls June 6th, 2021

Physics

Researchers take quantum encryption out of the lab: Field trial shows simple QKD system works with existing telecommunication network in Italy June 11th, 2021

An atom chip interferometer that could detect quantum gravity June 4th, 2021

Possible Futures

NSS Announces Juno Project Scientist Dr. Scott Bolton as a Keynote Speaker at the 2021 Online ISDC: This Year’s Virtual Conference Streams Free to All June 24th, 2021

NSS Fetes JPL’s Rob Manning and Robert Braun at the Online 2021 International Space Development Conference: This Year’s Virtual Conference Streams Free to All Beginning Thursday June 24th, 2021

‘Flashed’ nanodiamonds are just a phase: Rice produces fluorinated nanodiamond, graphene, concentric carbon via flash Joule heating June 23rd, 2021

Princeton-led team discovers unexpected quantum behavior in kagome lattice:Experiments suggest evidence for novel patterns of electronic charge distribution in a kagome material whose handedness can be manipulated with a magnetic field June 18th, 2021

Chip Technology

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

Rice lab peers inside 2D crystal synthesis: Simulations could help molecular engineers enhance creation of semiconducting nanomaterials June 11th, 2021

Magnetism drives metals to insulators in new experiment: Study provides new tools to probe novel spintronic devices June 4th, 2021

New form of silicon could enable next-gen electronic and energy devices: Novel crystalline form of silicon could potentially be used to create next-generation electronic and energy devices June 4th, 2021

Quantum Computing

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Researchers realize high-efficiency frequency conversion on integrated photonic chip April 23rd, 2021

New nanoscale device for spin technology: Spin waves could unlock the next generation of computer technology, a new component allows physicists to control them April 16th, 2021

Qubits comprised of holes could be the trick to build faster, larger quantum computers: Electron holes could be the solution to operational speed/coherence trade-off April 2nd, 2021

Discoveries

‘Flashed’ nanodiamonds are just a phase: Rice produces fluorinated nanodiamond, graphene, concentric carbon via flash Joule heating June 23rd, 2021

Graphene drum: Researchers develop new phonon laser design June 18th, 2021

Proliferation of electric vehicles based on high-performance, low-cost sodium-ion battery:A large-capacity anode material is developed for sodium-ion batteries by using low-cost silicone-based oil. This process, if commercialized, is expected to significantly reduce manufacturing June 18th, 2021

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

Announcements

NSS Announces Juno Project Scientist Dr. Scott Bolton as a Keynote Speaker at the 2021 Online ISDC: This Year’s Virtual Conference Streams Free to All June 24th, 2021

Arrowhead Presents Positive Interim Clinical Data on ARO-HSD Treatment in Patients with Suspected NASH at EASL International Liver Congress June 24th, 2021

NSS Fetes JPL’s Rob Manning and Robert Braun at the Online 2021 International Space Development Conference: This Year’s Virtual Conference Streams Free to All Beginning Thursday June 24th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

‘Flashed’ nanodiamonds are just a phase: Rice produces fluorinated nanodiamond, graphene, concentric carbon via flash Joule heating June 23rd, 2021

Proliferation of electric vehicles based on high-performance, low-cost sodium-ion battery:A large-capacity anode material is developed for sodium-ion batteries by using low-cost silicone-based oil. This process, if commercialized, is expected to significantly reduce manufacturing June 18th, 2021

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project