Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Faster design -- better catalysts: New method facilitates research on fuel cell catalysts

Not the complete platinum surface is catalytically active, but only some especially exposed areas, so-called active centers. Measurement of a platinum electrode with a hanging meniscus configuration.
CREDIT: Wenzel Schuermann, Technical University of Munich
Not the complete platinum surface is catalytically active, but only some especially exposed areas, so-called active centers. Measurement of a platinum electrode with a hanging meniscus configuration.

CREDIT: Wenzel Schuermann, Technical University of Munich

Abstract:
While the cleaning of car exhausts is among the best known applications of catalytic processes, it is only the tip of the iceberg. Practically the entire chemical industry relies on catalytic reactions. Therefore, catalyst design plays a key role in improving these processes. An international team of scientists has now developed a concept, that elegantly correlates geometric and adsorption properties. They validated their approach by designing a new platinum-based catalyst for fuel cell applications.

Faster design -- better catalysts: New method facilitates research on fuel cell catalysts

Muenchen, Germany | Posted on October 9th, 2015

Hydrogen would be an ideal energy carrier: Surplus wind power could split water into its elements. The hydrogen could power fuel cell-driven electric cars with great efficiency. While the only exhaust would be water, the range could be as usual. But fuel cell vehicles are still a rare exception. The required platinum (Pt) is extremely expensive and the world's annual output would not suffice for all cars.

A key component of the fuel cell is the platinum catalyst that is used to reduce oxygen. It is well known that not the entire surface but only a few particularly exposed areas of the platinum, the so-called active centers, are catalytically active.

A team of scientists from the Technical University of Munich and the Ruhr University Bochum (Germany), the Ecole normale superieure (ENS) de Lyon, Centre national de la recherche scientifique (CNRS), Universite Claude Bernard Lyon 1 (France) and Leiden University (Netherlands) have set out to determine what constitutes an active center.

Studying the model

A common method used in developing catalysts and in modeling the processes that take place on their surfaces is computer simulation. But as the number of atoms increases, quantum chemical calculations quickly become extremely complex.

With their new methodology called "coordination-activity plots" the research team presents an alternative solution that elegantly correlates geometric and adsorption properties. It is based on the "generalized coordination number" (GCN), which counts the immediate neighbors of an atom and the coordination numbers of its neighbors.

Calculated with the new approach, a typical Pt (111) surface has a GCN value of 7.5. According to the coordination-activity plot, the optimal catalyst should, however, achieve a value of 8.3. The required larger number of neighbors can be obtained by inducing atomic-size cavities into the platinum surface, for example.

Successful practical test

In order to validate the accuracy of their new methodology, the researchers computationally designed a new type of platinum catalyst for fuel cell applications. The model catalysts were prepared experimentally using three different synthesis methods. In all three cases, the catalysts showed up to three and a half times greater catalytic activity.

"This work opens up an entirely new way for catalyst development: the design of materials based on geometric rationales which are more insightful than their energetic equivalents," says Federico Calle-Vallejo. "Another advantage of the method is that it is based clearly on one of the basic principles of chemistry: coordination numbers. This significantly facilitates the experimental implementation of computational designs."

"With this knowledge, we might be able to develop nanoparticles that contain significantly less platinum or even include other catalytically active metals," says Professor Aliaksandr S. Bandarenka, tenure track professor at Technical University of Munich. "And in future we might be able to extend our method to other catalysts and processes, as well."

###

The research was funded by the European Union's Fuel Cells and Hydrogen (FCH) Initiative, the Netherlands Organization for Scientific Research (NWO), the German Research Council (via SFB 749, the Cluster of Excellence Nanosystems Initiative Munich (NIM) and Ruhr Explores Solvation (RESOLV)) and the Helmholtz Energy Alliance.

Publication:

Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors, Federico Calle-Vallejo, Jakub Tymoczko, Viktor Colic, Quang Huy Vu, Marcus D. Pohl, Karina Morgenstern, David Loffreda, Philippe Sautet, Wolfgang Schuhmann, Aliaksandr S. Bandarenka. Science, october 9., 2015 - DOI : 10.1126/science.aab3501

####

For more information, please click here

Contacts:
Dr. Andreas Battenberg

49-892-891-0510

Copyright © Technische Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project