Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Fine-tuned molecular orientation is key to more efficient solar cells

Schematic illustrating the structure of the new solar cell
Schematic illustrating the structure of the new solar cell

Abstract:
Polymer solar cells are a hot area of research due to both their strong future potential and the significant challenges they pose. It is believed that thanks to lower production costs, they could become a viable alternative to conventional solar cells with silicon substrates when they achieve a power conversion efficiency—a measure that indicates how much electricity they can generate from a given amount of sunlight—of between 10 and 15 percent. Now, using carefully designed materials and an “inverted” architecture, a team of scientists has achieved efficiency of 10 percent, bringing these cells close to the threshold of commercial viability.

Fine-tuned molecular orientation is key to more efficient solar cells

Wako, Japan | Posted on May 26th, 2015

Polymer-based solar cells offer a number of potential advantages. They are made of polymers that are inexpensive and flexible, and can be deposited on glass or plastic substrates, allowing the construction of large-scale structures. They are cheaper to manufacture, and more environmentally-friendly, than their silicon counterparts. Unfortunately, they have lower power efficiency due to their structure and also tend to degrade more quickly.

In the research published in Nature Photonics, a collaboration including Itaru Osaka and Kazuo Takimiya of the RIKEN Center for Emergent Matter Science managed to create a type of polymer solar cell called a bulk-heterojunction solar cell—where the electron donor and acceptor layers are mixed together—with a power conversion efficiency of 10%, close to what will allow these materials to be commercially viable.

According to Osaka, “While private firms have been able to develop cells with similar efficiency, they have done so using proprietary technology, so that it was not possible to know why things were working the way they were. We began experimenting with a substance called PNTz4T, which we had previously developed, and were able initially to achieve a power conversion efficiency of about 8%, with a fairly thick active layer of about 300 nanometers. Surprisingly, though, we found that when we used an inverted architecture, where the light enters through a transparent negative electrode, in our case made of zinc oxide, we found that the cell with the inverted architecture had better efficiency, which is abnormal for cells of the type we built. We believe that it is due to the alignment of molecules inside the mixed layers."

The researchers analyzed the composition of the materials using the SPring-8 synchrotron facility in Harima, and found indeed that in the inverted model, the orientation of the molecules within the active layer was very commonly “face-on,” an orientation well suited to the transport of electron holes through the material. Takamiya says, “We surmised that this was the secret to the success in the experiment. It turns out that by trying something that might seem unusual, we got a surprising result, and through this were able to understand something about what makes cells more or less efficient.”

According to Professor Hideyuki Murata of the Japan Advanced Institute of Science and Technology, who participated in the research, “This is an exciting result because we now have an understanding of how we can move forward to create polymer solar cells with greater efficiency. We hope that researchers around the world will be able to make use of these results to create commercially viable cells.”

The work was done in collaboration with the Japan Advanced Institute of Science and Technology, Hiroshima University, and the Japan Synchrotron Radiation Research Institute (JASRI). It was funded by the Japan Science and Technology Agency (JST) under its Precursory Research for Embryonic Science and Technology program.

Full bibliographic information

Varun Vohra, Kazuaki Kawashima, Takeshi Kakara, Tomoyuki Koganezawa, Itaru Osaka2,5*, Kazuo Takimiya and Hideyuki Murata, Efficient inverted polymer solar cells employing favourable molecular orientation, Nature Photonics, doi: 10.1038/nphoton.2015.84

####

About RIKEN
RIKEN is Japan's largest research institute for basic and applied research. Over 2500 papers by RIKEN researchers are published every year in leading scientific and technology journals covering a broad spectrum of disciplines including physics, chemistry, biology, engineering, and medical science. RIKEN's research environment and strong emphasis on interdisciplinary collaboration and globalization has earned a worldwide reputation for scientific excellence.

Website: www.riken.jp/en/
Twitter: @riken_en
Facebook: https://www.facebook.com/RIKEN.english

About the RIKEN Center for Emergent Matter Science (CEMS)

The aim of the research carried out at the Center for Emergent Matter Science (CEMS) is to address humanity's energy problems and contribute to building a sustainable society. Taking a pioneering role in the new field of emergent materials science, scientists at CEMS are developing new, more efficient technologies that will enable us to produce energy without putting a burden on the environment, as well as decrease our energy consumption. They achieve this by combining advanced research in physics, chemistry and electronics in order to produce new technology such as highly efficient energy conversion devices and low-consumption electronics.
Website: http://www.cems.riken.jp/en/

For more information, please click here

Contacts:
Dr. Itaru Osaka
RIKEN Center for Emergent Matter Science, Japan


For more information please contact:

Jens Wilkinson
RIKEN Global Communications

Tel: +81-(0)48-462-1225+81-(0)48-462-1225
http://www.riken.jp/en/

Copyright © RIKEN

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project