Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Negative capacitance detected

Abstract:
Prof Gustau Catalan has published in Nature Materials a "News and Views" commenting the measurement of negative capacitance presented by the teams led by Prof Sayeef Salahuddin and Prof. Ramesh in the same magazine. The study detects the phenomenon in ferroelectrics, a field in which ICN2 treasures significant expertise.

Negative capacitance detected

Barcelona, Spain | Posted on February 9th, 2015

Prof Gustau Catalan, ICREA Research Professor and Group Leader at ICN2, together with Prof David Jimenez from UAB and Prof Alexei Gruverman from University of Nebraska, have released in Nature Materials a News and Views article about the detection of negative capacitance and its uses. The article's starting point is the research led by Prof Sayeef Salahuddin, from University of Berkeley (USA), where a way to measure the phenomenon is proposed for the first time (Nature Materials).
Prof Catalan's Oxide Nanoelectronics Group, has ferroelectricity as one of its main research lines. In the article, the three authors make a brief explanation about what negative capacitance is and how Prof Salahuddin's Group have come to detect it. Negative capacitance in ferroelectric materials had only been predicted theoretically until now. Ferroelectrics switch their polarization when a certain critical voltage is reached. This causes an enormous and sudden accumulation of bound charge at the material's surface that can momentarily exceed the free charge supplied to the electrodes by a power source. If a resistance is placed between the electrodes and the charge supplied by the external voltage is slowed down, it can be detected for a while a decrease in voltage across the ferroelectric while the charge is still increasing. Consequently, the capacitance (charge divided by voltage) has a negative value.

Catalan, Jimenez and Gruverman discuss the advantages that its use could suppose for designing new electronic devices, and specifically ultra-efficient transistors. However, they also emphasize that there is still a great distance from the (important) proof of concept by Salahuddin et al. and the actual implementation in practical devices, due to the existence of many subtle problems that emerge when ferroelectrics are put in contact with semiconductors.

Article Reference
Catalan G, Jimenez D, Gruverman A. Negative capacitance detected. Nature Materials 14, 137-139 (2015) doi:10.1038/nmat4195

####

For more information, please click here

Contacts:
Alicia Labian

Copyright © ICN2

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Chip Technology

University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

The present and future of computing get a boost from new research July 21st, 2023

Scientists edge toward scalable quantum simulations on a photonic chip: A system using photonics-based synthetic dimensions could be used to help explain complex natural phenomena June 30th, 2023

Discoveries

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Announcements

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project