Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New “triggered-release” mechanism could improve drug delivery

'Parent' Nanoparticle to 'Daughter' - A series of transmission electron microscopy (TEM) images that show the transition from the 'parent' cylindrical nanoparticles to the spherical 'daughter' nanoparticles
'Parent' Nanoparticle to 'Daughter' - A series of transmission electron microscopy (TEM) images that show the transition from the 'parent' cylindrical nanoparticles to the spherical 'daughter' nanoparticles

Abstract:
More efficient medical treatments could be developed thanks to a new method for triggering the rearrangement of chemical particles.

New “triggered-release” mechanism could improve drug delivery

Coventry, UK | Posted on January 17th, 2015

The new method, developed at the University of Warwick, uses two ‘parent' nanoparticles that are designed to interact only when in proximity to each other and trigger the release of drug molecules contained within both.

The release of the drug molecules from the ‘parent' nanoparticles could subsequently form a third ‘daughter' particle, which comprises molecules from both ‘parent' nanoparticles.

The researchers, led by Professors Andrew Dove and Rachel O'Reilly, suggest that this new mechanism could potentially limit side-effects by only releasing the drug where required:

"We conceive that in the blood stream the particles would not be able to interact sufficiently to lead to release, only when they are taken into cells would the release be able to happen", says Professor Dove. "In this way, the drug can be targeted to only release where we want it to and therefore be more effective and reduce side effects".

The chemical composition of the two ‘parent' nanoparticles is crucial to the new method. Professor Dove explains:

"The two ‘parent' nanoparticles used in the new mechanism are cylindrical in shape and are made from polymer chains that differ only by the way in which chemical bonds are directed within a part of the structure.

"When the two ‘parent' nanoparticles are in close enough proximity the polymer chains are driven to come together to form a new ‘daughter' nanoparticle by a phenomenon known as stereocomplexation.

"In the process of this rearrangement, we propose that any molecules, such as drug molecules, that are encapsulated within the parent particles will be released."

Published in journal Nature Communications the research, Structural reorganisation of cylindrical nanoparticles triggered by polylactide stereocomplexation, could "raise new possibilities in how we can administer medical treatments", says Professor Dove. "We're planning to study this as a new treatment for cancer but the principle could potentially be applied to a wide range of diseases."

####

About University of Warwick
The University of Warwick is consistently ranked in the Top Ten UK Universities.

For more information, please click here

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project