Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nearly Everyone Uses Piezoelectrics: Be Nice to Know How They Work

These two neutron scattering images represent the nanoscale structures of single crystals of PMN and PZT. Because the atoms in PMN deviate slightly from their ideal positions, diffuse scattering results in a distinctive "butterfly" shape quite different from that of PZT, in which the atoms are more regularly spaced.
Credit: NIST
These two neutron scattering images represent the nanoscale structures of single crystals of PMN and PZT. Because the atoms in PMN deviate slightly from their ideal positions, diffuse scattering results in a distinctive "butterfly" shape quite different from that of PZT, in which the atoms are more regularly spaced.

Credit: NIST

Abstract:
Piezoelectrics—materials that can change mechanical stress to electricity and back again—are everywhere in modern life. Computer hard drives. Loud speakers. Medical ultrasound. Sonar. Though piezoelectrics are a widely used technology, there are major gaps in our understanding of how they work. Now researchers at the National Institute of Standards and Technology (NIST) and Canada's Simon Fraser University believe they've learned why one of the main classes of these materials, known as relaxors, behaves in distinctly different ways from the rest and exhibit the largest piezoelectric effect. And the discovery comes in the shape of a butterfly.*

Nearly Everyone Uses Piezoelectrics: Be Nice to Know How They Work

Gaithersburg, MD | Posted on January 29th, 2014

The team examined two of the most commonly used piezoelectric compounds—the ferroelectric PZT and the relaxor PMN—which look very similar on a microscopic scale. Both are crystalline materials composed of cube-shaped unit cells (the basic building blocks of all crystals) that contain one lead atom and three oxygen atoms. The essential difference is found at the centers of the cells: in PZT these are randomly occupied by either one zirconium atom or one titanium atom, both of which have the same electric charge, but in PMN one finds either niobium or manganese, which have very different electric charges. The differently charged atoms produce strong electric fields that vary randomly from one unit cell to another in PMN and other relaxors, a situation absent in PZT.

"PMN-based relaxors and ferroelectric PZT have been known for decades, but it has been difficult to identify conclusively the origin of the behavioral differences between them because it has been impossible to grow sufficiently large single crystals of PZT," says the NIST Center for Neutron Research (NCNR)'s Peter Gehring. "We've wanted a fundamental explanation of why relaxors exhibit the greatest piezoelectric effect for a long time because this would help guide efforts to optimize this technologically valuable property."

A few years ago, scientists from Simon Fraser University found a way to make crystals of PZT large enough that PZT and PMN crystals could be examined with a single tool for the first time, permitting the first apples-to-apples comparison of relaxors and ferroelectrics. That tool was the NCNR's neutron beams, which revealed new details about where the atoms in the unit cells were located. In PZT, the atoms sat more or less right where they were expected, but in the PMN, their locations deviated from their expected positions—a finding Gehring says could explain the essentials of relaxor behavior.

"The neutron beams scatter off the PMN crystals in a shape that resembles a butterfly," Gehring says. "It gives a characteristic blurriness that reveals the nanoscale structure that exists in PMN—and in all other relaxors studied with this method as well—but does not exist in PZT. It's our belief that this butterfly-shaped scattering might be a characteristic signature of relaxors."

Additional tests the team performed showed that PMN-based relaxors are over 100 percent more sensitive to mechanical stimulation compared to PZT, another first-time measurement. Gehring says he hopes the findings will help materials scientists do more to optimize the behavior of piezoelectrics generally.

*D. Phelan, C. Stock, J.A. Rodriguez-Rivera, S. Chi, J.Leão, X. Long,Y. Xie, A.A. Bokov, Z. Ye, P. Ganesh and P.M. Gehring. Role of random electric fields in relaxors. Proceedings of the National Academy of Sciences, Jan. 21, 2014. DOI:10.1073/pnas.1314780111.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Chad Boutin
301-975-4261

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project