Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Gold Nanorods Detect Ovarian Cancer, Improve Surgical Removal in Mice

Abstract:
Using gold nanorods that are visible using two different types of imaging techniques, researchers at the Stanford University Center for Cancer Nanotechnology Excellence and Translation (Stanford CCNE-T) have developed a promising new method that may be able to detect early stage ovarian cancer and help surgeons completely remove the detected tumor. The researchers have successfully tested this imaging agent in an animal model of human ovarian cancer and are already working on an improved agent that may be able to discriminate between malignant and benign ovarian masses. The Stanford CCNE-T team, led by Sanjiv Sam Gambhir, reported its findings in the journal ACS Nano.

Gold Nanorods Detect Ovarian Cancer, Improve Surgical Removal in Mice

Bethesda, MD | Posted on December 17th, 2012

Ovarian cancer is the fifth most common cancer among women, and it causes more deaths than any other type of female reproductive cancer, largely because ovarian cancer symptoms are vague and it most often goes undiagnosed until it has spread to other parts of the body. However, when detected early, the five-year survival rate is as high as 95 percent, so the development of non-invasive and inexpensive technology to detect early stage ovarian cancer could have a profound impact on patient survival.

To create their new imaging agent, Dr. Gambhir's team took advantage of the unique properties of gold nanorods, which interact strongly with light in a variety of useful ways. For example, gold nanorods will absorb near-infrared light and produce heat that creates a pressure wave that can be detected with standard ultrasound devices that are already used widely in doctor's offices. This technique is known as photoacoustic spectroscopy. Gold nanorods will also generate a well-defined optical emission that can be detected using surface-enhanced Raman spectroscopy (SERS), another well-established measurement technology.

Another useful property of nanorods in general is that their shape somehow enables them to accumulate more effectively than spherical particles around tumors. Researchers assume that the long, thin shape enables the rods to more easily penetrate and escape the leaky blood vessels that surround tumors.

To assess the imaging capabilities of gold nanorods, the investigators created three different batches that varied in the ratio of their length to width, also known as the aspect ratio. Based on the intensity of the photoacoustic signal and the Raman signal, the researchers settled on a gold nanorod with an aspect ratio of 3.5 (756 nm absorbance) for further testing. When injected intravenously into mice bearing human ovarian tumors, these gold nanorods were readily detected through the skin in and around tumors in live animals. The researchers noted that the photoacoustic signal from the injected nanorods remained stable for three days, while signal from nanorods circulating in blood returned to baseline levels within 24 hours, a desirable trait for a clinically useful imaging agent.

Next, Dr. Gambhir and his colleagues used the SERS signal to guide surgical removal of the tumors. Presurgical images clearly showed the location and edges, or margins, of even small tumors, and post-surgical imaging confirmed that all traces of tumor were removed.

Though the photoacoustic signal from the gold nanorods can be detected through as much as 4 centimeters (just over 1.5 inches) of tissue, Dr. Gambhir and his colleagues are developing photoacoustic catheters that will further increase the number of accessible sites. They are also developing nanorods targeted specifically to malignant ovarian tumors that would not only accumulate better in tumors, but may also be able to distinguish malignant from benign ovarian masses.

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - This work, which is detailed in a paper titled, “Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice,” was supported in part by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. An abstract of this paper is available at the journal's website:

Related News Press

Imaging

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

News and information

New method in the fight against forever chemicals September 13th, 2024

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Discoveries

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Announcements

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

New method in the fight against forever chemicals September 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Tools

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project