Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Flash photolysis spectrometer helps with light harvesting research

Abstract:
Researchers at the University of Connecticut have been using the LP920 flash photolysis spectrometer from Edinburgh Instruments as part of their research into plant light harvesting complexes1. A paper has been published2 with collaborators at Kwansei Gakuin University examining the efficiency of variants of the Peridinin-Chlorophyll a-Protein (PCP) complex in providing photoprotection from singlet oxygen formation. PCP's highly effective protective capacity against these photodynamic reactions is extremely important since singlet oxygen can directly provoke cellular damage in plants by rapidly oxidizing cellular components.

Flash photolysis spectrometer helps with light harvesting research

Livingston, UK | Posted on December 6th, 2012

The LP920 was used to record transient triplet-minus-singlet absorption spectra of chlorophyll a with different peridinin molecular analogs in polar and non-polar solvents, allowing the dynamics of the reactions to be investigated. Although the results showed that the spectral bands are shifted depending on the molecular analog used, the dynamics of triplet state decay remain very similar for each analog meaning that there is no marked difference between them in terms of their ability to protect against singlet oxygen formation.

The LP920 is a computer-controlled, fully automated flash photolysis spectrometer, equipped with a large sample chamber to house a variety of sample holders. Excitation pulses at 660 -670 nm for these experiments were provided using an Nd:YAG-pumped laser light source. A pulsed, high-intensity 450 W Xenon lamp was used for the transient absorption spectral measurements.

1 Light harvesting complexes consist of proteins and photosynthetic pigments that surround a photosynthetic reaction centre and collect more of the incoming light than would be captured by this centre alone.

2 S. Kaligotla, S. Doyle, D. M. Niedzwiedzki, S. Hasegawa, T. Kajikawa, S. Katsumura & H. A. Frank, Photosynth. Res (2010) 103; 167-174

####

For more information, please click here

Contacts:
Press Enquiries:
In Press Public Relations Ltd
PO Box 24
Royston, Herts, SG8 6TT
Tel: +44 1763 262621

Internet: www.inpress.co.uk

Other Enquiries:
Edinburgh Instruments Ltd
2 Bain Square, Kirkton Campus
Livingston, EH54 7DQ, UK
Tel: + 44 1506 425 300

Copyright © Edinburgh Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Photonics/Optics/Lasers

Aston University researcher receives 1 million grant to revolutionize miniature optical devices May 17th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project