Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Major Award for an Immunologist from the University of Freiburg: Michael Reth has been awarded a 2.24 million Euro Advanced Grant from the European Research Council

Prof. Dr. Michael Reth
Prof. Dr. Michael Reth

Abstract:
Prof. Dr. Michael Reth, professor of Molecular Immunology at the Institute of Biology III, speaker of the excellence cluster Centre for Biological Signaling Studies BIOSS and group leader at the Max Planck Institute of Immunobiology and Epigenetics in Freiburg, has been awarded an Advanced Grant of the European Research Council (ERC). The 2.24 million Euro award will be used to fund research over the next 5 years.
The Albert-Ludwigs-University scientist wants to use this special funding to explore the nanoscale organization of proteins in biological membranes. With his nanoscale explorer program, Reth and his group wish to obtain new insights into membrane processes of normal and diseased cells.

Major Award for an Immunologist from the University of Freiburg: Michael Reth has been awarded a 2.24 million Euro Advanced Grant from the European Research Council

Freiburg, Germany | Posted on November 15th, 2012

The funded project, "Nanoscale analysis of protein islands on lymphocytes", is a continuation of Reth's research on the structure and function of receptors on immune cells. Receptors are membrane proteins or protein complexes that are associated with intracellular signaling molecules and can induce or regulate processes in cells. With his research group, Reth has proposed a new model for the activation of the B cell antigen receptor and recently validated it by employing new methods to study membrane proteins. His research shows that the receptor organization on the membrane is much more complex than has been appreciated so far.

Because of the physical limitations of visible light with a diffraction limit of 250 nanometers (nm), the structure of receptors cannot be observed directly. Yet most receptors interact with each other in a range below 150 nm.. Reth's group has developed methods allowing one to study the organization and reorganization of membrane proteins in a range between 10 and 100 nm. "When we study biological membranes in the nanoscale range we feel like oceanologists who are for the first time able to explore the deepest parts of the ocean and discover new worlds" says Reth. This project is bound to provide major new insights in the organization and function of biological membranes in the coming years. A better understanding of the nanoscale membrane protein organization could lead to the development of new therapies that control deregulated signaling processes.

Reth was recruited to Freiburg in 1981 by the Nobel Prize winner Prof. Dr. Georges Köhler. In 1995 he received the Leibniz Prize and in 2009 the
Schering-Plough Research Prize.

####

About Albert-Ludwigs-Universität Freiburg
The University of Freiburg was founded in 1457 as a classical comprehensive university, making it one of the oldest higher education institutions in Germany. Successful in the Excellence Initiative, the university also boasts an illustrious history with numerous Nobel Prize recipients. Brilliant scholars and creative thinking distinguish it today as a modern top-notch university well equipped for the challenges of the 21st century.

For more information, please click here

Contacts:
Prof. Dr. Michael Reth
BIOSS Centre for Biological Signalling Studies
University of Freiburg
Phone: +49 (0)761/203-97374
E-Mail:

Albert-Ludwigs-Universität Freiburg
Stabsstelle Öffentlichkeitsarbeit und Beziehungsmanagement
Abt. Presse- und Öffentlichkeitsarbeit
Fahnenbergplatz
79085 Freiburg
Tel.: (+49) 0761/203-4302
Fax: (+49) 0761/203-4278

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Nanomedicine

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project