Home > Press > Revolutionary ultrathin, flat lens: Smart phones as thin as a credit card?
![]() |
Revolutionary ultrathin, flat lens: Smart phones as thin as a credit card? Credit: iStockphoto/Thinkstock |
Abstract:
Scientists are reporting development of a revolutionary new lens — flat, distortion-free, so small that more than 1,500 would fit across the width of a human hair — capable in the future of replacing lenses in applications ranging from cell phones to cameras to fiber-optic communication systems. The advance, which could lead to smart phones as thin as a credit card, appears in ACS' journal Nano Letters.
Federico Capasso and colleagues explain that the lenses used to focus light in eyeglasses, microscopes and other products use the same basic technology dating to the late 1200s, when spectacle lenses were introduced in Europe. Existing lenses are not thin or flat enough to remove distortions, such as spherical aberration, astigmatism and coma, which prevent the creation of a sharp image. Correction of those distortions requires complex solutions, such as multiple lenses that increase weight and take up space. To overcome these challenges, the scientists sought to develop a new superthin, flat lens.
Although the new lens is ultra-thin, it has a resolving power that actually approaches the theoretical limits set by the laws of optics. The lens surface is patterned with tiny metallic stripes which bend light differently as one moves away from the center, causing the beam to sharply focus without distorting the images. The current version of the lens works at a specific design wavelength, but the scientists say it can be redesigned for use with broad-band light.
The authors acknowledge funding from the National Science Foundation, the Robert A. Welch Foundation and the European Communities Seventh Framework Programme, as well as support from the Center for Nanoscale Systems at Harvard University.
####
For more information, please click here
Contacts:
Federico Capasso, Ph.D.
School of Engineering and Applied Sciences, Harvard University
Cambridge, Mass. 02138
Copyright © American Chemical Society (ACS)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Govt.-Legislation/Regulation/Funding/Policy
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Discoveries
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Announcements
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |