Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ultra High-Frequency Ultrasound and Photoacoustics Enable Breakthrough Molecular Imaging in Translational Research

Abstract:
Designed specifically for preclinical research, ultra high-frequency ultrasound systems enable in vivo viewing and assessment of miniscule targets. When combined with high-resolution molecular imaging, these systems allow researchers to view small-animal anatomical structures and micro-environmental functions in real time, such as beating hearts and growing malignancies.

Ultra High-Frequency Ultrasound and Photoacoustics Enable Breakthrough Molecular Imaging in Translational Research

Toronto, Canada | Posted on September 3rd, 2012

This breakthrough ultrasound technology allows the world's most prestigious pharmaceutical and biotechnology companies, hospitals, and universities to enhance their research capabilities in areas such as translational research, cardiovascular function and disease, cancer, neurobiology, developmental biology, drug development, phenotypic studies, and genetic research, among others.

One company that has established itself as a leader in preclinical, in vivo imaging is VisualSonics, Inc., a wholly owned subsidiary of clinical ultrasound manufacturer SonoSite, Inc., a Fujifilm company. VisualSonics' Vevo® products line includes high-frequency micro-imaging systems (Vevo® 2100 and 770) and a premier photoacoustic imaging platform, the Vevo LAZR*. The Vevo LAZR* has expanded in vivo nanoparticle imaging and microenvironmental research capabilities by simultaneously collecting and displaying high-resolution micro-ultrasound and photoacoustic signals. These systems have found strong utility in advanced preclinical research resulting in over 700 peer-reviewed publications across the globe.

One area where these technologies show particular promise is translational research. Because translational research connects preclinical research at the bench with clinical outcomes at the patients' bedside, the development of research tools that promise and show direct relevance to imaging and quantification of diseases in humans is critical for today's basic science researchers. As the primary and secondary causes of death globally, cardiovascular disease and cancer represent important basic research and clinical research areas, which can be studied in animal models non-invasively in real-time through the use of high-frequency ultrasound. And, using the company's photoacoustic technology for molecular imaging, cancer can be studied in its earliest stages of progression in animal test subjects.


To introduce in vivo high-frequency ultrasound and photoacoustic imaging to researchers and other potential users, VisualSonics has been offering lab visits with top preclinical researchers using these advanced technologies, as well as free webinar presentations by some of the world's most respected authorities on high-resolution micro-imaging.

To register for upcoming webinars, demonstrations, and laboratory visits—or to learn more about ultra high-frequency ultrasound and molecular imaging systems—go to: VisualSonics.com

####

For more information, please click here

Contacts:
3080 Yonge Street Suite 6100, Box 66
Toronto, Ontario, Canada
M4N 3N1
T. +1.416.484.5000
F. +1.416.484.5001
North American Toll Free 1.866.416.4636

SA Perillo

Copyright © VisualSonics Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Nanomedicine

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Tools

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Hitachi’s holography electron microscope attains unprecedented resolution:Image acquisition and defocusing correction techniques enable observations of atomic-scale magnetic fields at never-before-seen resolution July 5th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project