Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > World Record Neutron Beam at Los Alamos National Laboratory New Method Has Potential to Advance Materials Measurement

Abstract:
Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam ever made by a short-pulse laser, breaking a world record. Neutron beams are usually made with particle accelerators or nuclear reactors and are commonly used in a wide variety of scientific research, particularly in advanced materials science.

World Record Neutron Beam at Los Alamos National Laboratory New Method Has Potential to Advance Materials Measurement

Los Alamos, NM | Posted on July 10th, 2012

Using the TRIDENT laser, a unique and powerful 200 trillion-watt short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin plastic sheet infused with an isotope of hydrogen called deuterium.

The laser light — 200 quintillion watts per square centimeter, equivalent to focusing all of the light coming from the sun to the earth (120,000 terawatts) onto the tip of a pencil — interacts with the plastic sheet, creating a plasma, an electrically charged gas. A quintillion is a one with 18 zeros after it.

The plasma then accelerates large numbers of deuterons — the nucleus of the deuterium atom — into a sealed beryllium target, converting the deuterons into a neutron beam. Using a unique property of plasmas called relativistic transparency, the deuterons are accelerated in just one millimeter rather than the many meters required by standard accelerator technologies.

"So far only at TRIDENT has this new plasma acceleration mechanism been successfully implemented," said Markus Roth from the Technical University of Darmstadt, who serves as the 2012 Rosen Scholar at Los Alamos. "This result is the world's record for short-pulse laser generated neutron flux, four quintillion neutrons per square centimeter for an object one centimeter from the source. In this generation scheme, the neutrons are emitted along the direction of the initial laser beam and can reach very high energies, in excess of 50 million electron volts."

According to Roth, the new record is five times larger than the previous record and required less than a quarter of the laser energy.

"Neutrons are a unique probe with many scientific applications," said Frank Merrill of LANL's neutron science and technology group. "Neutrons are used to study fundamental properties of the universe, advanced materials, and have potential applications such as active interrogation of cargo containers, monitoring for clandestine nuclear explosives at border crossings, and as a test bed for fusion-relevant neutron diagnostics, the initial impetus for this study."

This record neutron beam has the speed and energy range that makes it an ideal candidate for radiography and a wide variety of high-energy-density physics studies.

"An object placed one centimeter behind the source would be exposed to more than 40 neutrons per square micrometer (one millionth of a meter) in less than a nanosecond (one billionth of a second) making it an impressive probe for radiography applications," said Merrill.

"Also, for the first time, in these experiments a neutron image driven by a short-pulse laser was realized and showed excellent agreement with numerical calculations," said Roth. Using short-pulse lasers for the production of neutrons can open the field of neutron research to universities, and a broader research community in general.

This project combined the expertise of LANL‘s Los Alamos Neutron Science Center (LANSCE) neutron science group with Physics division's plasma physicists, TRIDENT laser scientists, and scientists developing neutron detection diagnostics to be fielded at the National Ignition Facility. Scientists from Sandia provided neutron yield and nuclear activation measurements.

Trident Target caption: Tom Hurry of Plasma Physics adjusts the target positioner and particle beam diagnostics prior to an experiment at Trident.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Kevin Roark
505-665-9202

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026

Imaging

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Laboratories

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Govt.-Legislation/Regulation/Funding/Policy

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Tools

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Photonics/Optics/Lasers

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project