Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Microscope probe-sharpening technique improves resolution, durability

Joseph Lyding, a professor of electrical and computer engineering at the University of Illinois, led a group that developed a new microscope probe-sharpening technique.
Joseph Lyding, a professor of electrical and computer engineering at the University of Illinois, led a group that developed a new microscope probe-sharpening technique.

Abstract:
A simple new improvement to an essential microscope component could greatly improve imaging for researchers who study the very small, from cells to computer chips. Joseph Lyding, a professor of electrical and computer engineering at the University of Illinois, led a group that developed a new microscope probe-sharpening technique. The technique is described in research published this week in the journal Nature Communications.

Microscope probe-sharpening technique improves resolution, durability

Champaign, IL | Posted on July 5th, 2012

Scanning probe microscopes provide images of tiny structures with high resolution at the atomic scale. The tip of the probe skims the surface of a sample to measure mechanical, electrical or chemical properties. Such microscopes are widely used among researchers who work with tiny structures in fields from nanotechnology to cellular biology.

Labs can spend hundreds of thousands of dollars on an elegant instrument - for example, a scanning tunneling microscope (STM) or an atomic force microscope (AFM) - yet the quality of the data depends on the probe. Probes can degrade rapidly with use, wearing down and losing resolution. In such cases, the researcher then has to stop the scan and replace the tip.

"To put it in perspective, if you had an expensive racecar but you put bicycle tires on it, it wouldn't be a very good car," Lyding said.

To shape tips, researchers shoot a stream of ions at the tip. The material sputters off as the ions collide with the tip, whittling away the probe. One day in the lab, after yet another tip failure, Lyding had the simple, novel idea of applying a matching voltage to the tip to deflect the incoming ions. When a voltage is applied to a sharp object, the electrical field gets stronger as the point narrows. Therefore, ions approaching the sharpest part of the electrified tip are deflected the most.

"This causes the ions to remove the material around that sharp part, not on the sharp part itself, and that makes it sharper," Lyding said. "You preserve the point and you sharpen what's around it."

Lyding and graduate student Scott Schmucker purchased an inexpensive ion gun and tested Lyding's idea. It worked beautifully. STM tips with a starting radius of 100 nanometers were honed to a sharp 1-nanometer point, yielding extremely high resolution. In addition, the sputtering process works with any electrically conductive material.

But once the probes are ultra-sharp, what's to keep them from wearing down just as quickly as other probes? Lyding and Schmucker then teamed with U. of I. chemistry professor Gregory Girolami and materials science and engineering professor John Abelson, whose groups had demonstrated coatings for silicon semiconductors made of a material called hafnium diboride. The coatings are 10 times harder than the metal usually used to make STM tips, but are also metallic - the key property for the ion-sputtering process.

The group applied the hafnium diboride coatings to their probes, sputtered them further, and found that the resulting probes are stable, durable and excel in the types of microscopy and patterning applications for which such tips are used.

"Nobody else makes probes with the combination of sharp, hard and metallic conduction," said Lyding, who is also affiliated with the Beckman Institute for Advanced Science and Technology at the U. of I. "You can find one or the other but not all three. There's a tremendous demand for that."

The researchers now are moving to commercialize their tough, sharp probes. They received a patent and started a company called Tiptek to begin manufacture. They are also expanding their sharpening technique to include AFM probes as well as STM, and are developing batch-processing techniques for higher throughput.

"When people make AFM tips they make them on wafers, hundreds of tips at a time," said Lyding. "The methodology that we're developing lets us process this entire wafer as a unit so all 400 tips would be done at the same time."

The Office of Naval Research, the Defense Advanced Research Project Agency and the National Science Foundation supported this work.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1073


Joe Lyding
217-333-8370

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Field-directed Sputter Sharpening for Tailored Probe Materials and Atomic-scale Lithography,” is available online:

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project