Home > Press > Researchers test carbon nanotube-based ultra-low voltage integrated circuits
Abstract:
A team of researchers from Peking University in Beijing, China, and Duke University in Durham, North Carolina, has demonstrated that carbon nanotube-based integrated circuits can work under a supply voltage much lower than that used in conventional silicon integrated circuits.
Low supply voltage circuits produce less heat, which is a key limiting factor for increased circuit density. Carbon-based electronics have attracted attention mostly because of their speed. The new research shows that carbon nanotube integrated circuits could also offer the promise of extending Moore's Law by allowing even more transistors to fit onto a single chip without overheating. The results are reported in a paper accepted for publication in the American Institute of Physics' journal Applied Physics Letters.
###
Title: "Carbon nanotube based ultra-low voltage integrated circuits: scaling down to 0.4 V"
Journal: Applied Physics Letters
Authors: Li Ding (1), Shibo Liang (1), Tian Pei (1), Zhiyong Zhang (1), Sheng Wang (1), Weiwei Zhou (2), Jie Liu (2), and Lian-Mao Peng (1)
(1) Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, China
(2) Department of Chemistry, Duke University, North Carolina
####
For more information, please click here
Contacts:
Catherine Meyers
301-209-3088
Copyright © American Institute of Physics
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Chip Technology
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||