Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Going nano: A new step toward understanding the processes governing freshwater ooid formation

Abstract:
Muriel Pacton et al., Geological Institute, ETH-Zürich, Rämistrasse 101, 8092 Zürich, Switzerland. Posted online 27 April 2012; doi: 10.1130/G32846.1.

Going nano: A new step toward understanding the processes governing freshwater ooid formation

Boulder, CO | Posted on April 30th, 2012

Ooids are well-rounded sand grains composed of a nucleus encompassed by poorly to well-developed concentric micritic laminae. Results presented here by Muriel Pacton and colleagues challenge the standard hypothesis that ooids are indicators of turbulent hydrodynamic conditions by showing microbes as the main agent in ooid cortex formation in a quiescent environment. Pacton and colleagues combine cutting-edge techniques (i.e., NanoSIMS ion mapping, scanning electron microscopy imaging and analysis, and secondary ion mass spectrometry delta-13C and delta-18O isotopic analyses) to identify the microbial metabolism involved in ooid cortex formation. The combined elemental mapping and stable isotope study of freshwater ooids indicate that lamina formation is the result of the mineralization of organic substances produced by photosynthetic microbes. This study illustrates the importance of physico-chemical conditions versus organo-mineralization in determining the distribution, abundance, and cortical mineralogy of oolitic sands throughout the Phanerozoic stratigraphic record of carbonate accumulation. These new data further highlight the advantage of using a nano-scale approach to better discern between the various biotic and abiotic processes linked to carbonate precipitation.

####

For more information, please click here

Contacts:
Kea Giles

Copyright © Geological Society of America

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project