Home > Press > Going nano: A new step toward understanding the processes governing freshwater ooid formation
Abstract:
Muriel Pacton et al., Geological Institute, ETH-Zürich, Rämistrasse 101, 8092 Zürich, Switzerland. Posted online 27 April 2012; doi: 10.1130/G32846.1.
Ooids are well-rounded sand grains composed of a nucleus encompassed by poorly to well-developed concentric micritic laminae. Results presented here by Muriel Pacton and colleagues challenge the standard hypothesis that ooids are indicators of turbulent hydrodynamic conditions by showing microbes as the main agent in ooid cortex formation in a quiescent environment. Pacton and colleagues combine cutting-edge techniques (i.e., NanoSIMS ion mapping, scanning electron microscopy imaging and analysis, and secondary ion mass spectrometry delta-13C and delta-18O isotopic analyses) to identify the microbial metabolism involved in ooid cortex formation. The combined elemental mapping and stable isotope study of freshwater ooids indicate that lamina formation is the result of the mineralization of organic substances produced by photosynthetic microbes. This study illustrates the importance of physico-chemical conditions versus organo-mineralization in determining the distribution, abundance, and cortical mineralogy of oolitic sands throughout the Phanerozoic stratigraphic record of carbonate accumulation. These new data further highlight the advantage of using a nano-scale approach to better discern between the various biotic and abiotic processes linked to carbonate precipitation.
####
For more information, please click here
Contacts:
Kea Giles
Copyright © Geological Society of America
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Tools
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||