Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticle-Delivered RNA Interference Drug Stops Head and Neck Cancer Growth

Abstract:
A nanoparticle drug delivery vehicle for small interfering RNA molecules (siRNA), that is already being tested in human clinical trials, now shows promise for the treatment of head and neck cancer. Dong Shin, of Emory University, and Mark E. Davis, of the Nanosystems Biology Cancer Center at the California Institute of Technology, led this study. The results were published in the Journal of Controlled Release.

Nanoparticle-Delivered RNA Interference Drug Stops Head and Neck Cancer Growth

Bethesda, MD | Posted on April 5th, 2012

Drugs based on siRNA technology are designed to turn off the production of specific proteins that are critically involved in a disease such as cancer. While a significant body of evidence has shown this approach to targeting critical disease pathways can be highly effective, siRNA molecules themselves do not survive in the blood stream. Dr. Davis and his colleagues have long been leaders in the effort to use tumor-targeted nanoparticles to protect siRNAs from degradation and deliver them to where they are needed in the body.

In this study Dr. Davis's group, which had previously developed a nanoparticle that encapsulates a siRNA agent aimed at a protein known as RRM2, has teamed up with Dr. Shin's group to evaluate the effectiveness of these particles in head and neck cancer. RRM2, when over expressed in these tumor types, plays an active role in tumor progression and in the development of drug resistance. Initial tests on head and neck tumor cells growing in culture showed that this construct was taken up by the tumor cells, and as a result growth of the cells was inhibited substantially. The investigators obtained similar results when they tested the drug on cultured non-small cell lung cancer cells.

Based on these findings, the researchers tested the siRNA-loaded nanoparticle in a mouse model of human head and neck cancer. One intravenous injection of the drug shut down production of RRM2 for at least 10 days, with the nanoparticle being present in the tumor for three days. Four injections given over 10 days triggered a substantial amount of tumor cell death and significantly reduced tumor progression. The researchers note that they did not observe any adverse effects or changes in body weight during the course of therapy. They also showed that the drug had no effect on RRM2 production in the liver.

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Systemic delivery of siRNA nanoparticles targeting RRM2 suppresses head and neck tumor growth."

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Nanomedicine

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project